本文整理汇总了Python中pandas.CategoricalIndex方法的典型用法代码示例。如果您正苦于以下问题:Python pandas.CategoricalIndex方法的具体用法?Python pandas.CategoricalIndex怎么用?Python pandas.CategoricalIndex使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pandas
的用法示例。
在下文中一共展示了pandas.CategoricalIndex方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_get_indexer_consistency
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import CategoricalIndex [as 别名]
def test_get_indexer_consistency(self):
# See GH 16819
for name, index in self.indices.items():
if isinstance(index, IntervalIndex):
continue
if index.is_unique or isinstance(index, CategoricalIndex):
indexer = index.get_indexer(index[0:2])
assert isinstance(indexer, np.ndarray)
assert indexer.dtype == np.intp
else:
e = "Reindexing only valid with uniquely valued Index objects"
with pytest.raises(InvalidIndexError, match=e):
index.get_indexer(index[0:2])
indexer, _ = index.get_indexer_non_unique(index[0:2])
assert isinstance(indexer, np.ndarray)
assert indexer.dtype == np.intp
示例2: test_numpy_argsort
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import CategoricalIndex [as 别名]
def test_numpy_argsort(self):
for k, ind in self.indices.items():
result = np.argsort(ind)
expected = ind.argsort()
tm.assert_numpy_array_equal(result, expected)
# these are the only two types that perform
# pandas compatibility input validation - the
# rest already perform separate (or no) such
# validation via their 'values' attribute as
# defined in pandas.core.indexes/base.py - they
# cannot be changed at the moment due to
# backwards compatibility concerns
if isinstance(type(ind), (CategoricalIndex, RangeIndex)):
msg = "the 'axis' parameter is not supported"
with pytest.raises(ValueError, match=msg):
np.argsort(ind, axis=1)
msg = "the 'kind' parameter is not supported"
with pytest.raises(ValueError, match=msg):
np.argsort(ind, kind='mergesort')
msg = "the 'order' parameter is not supported"
with pytest.raises(ValueError, match=msg):
np.argsort(ind, order=('a', 'b'))
示例3: test_astype_category
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import CategoricalIndex [as 别名]
def test_astype_category(self, copy, name, ordered):
# GH 18630
index = self.create_index()
if name:
index = index.rename(name)
# standard categories
dtype = CategoricalDtype(ordered=ordered)
result = index.astype(dtype, copy=copy)
expected = CategoricalIndex(index.values, name=name, ordered=ordered)
tm.assert_index_equal(result, expected)
# non-standard categories
dtype = CategoricalDtype(index.unique().tolist()[:-1], ordered)
result = index.astype(dtype, copy=copy)
expected = CategoricalIndex(index.values, name=name, dtype=dtype)
tm.assert_index_equal(result, expected)
if ordered is False:
# dtype='category' defaults to ordered=False, so only test once
result = index.astype('category', copy=copy)
expected = CategoricalIndex(index.values, name=name)
tm.assert_index_equal(result, expected)
示例4: test_construction_with_dtype
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import CategoricalIndex [as 别名]
def test_construction_with_dtype(self):
# specify dtype
ci = self.create_index(categories=list('abc'))
result = Index(np.array(ci), dtype='category')
tm.assert_index_equal(result, ci, exact=True)
result = Index(np.array(ci).tolist(), dtype='category')
tm.assert_index_equal(result, ci, exact=True)
# these are generally only equal when the categories are reordered
ci = self.create_index()
result = Index(
np.array(ci), dtype='category').reorder_categories(ci.categories)
tm.assert_index_equal(result, ci, exact=True)
# make sure indexes are handled
expected = CategoricalIndex([0, 1, 2], categories=[0, 1, 2],
ordered=True)
idx = Index(range(3))
result = CategoricalIndex(idx, categories=idx, ordered=True)
tm.assert_index_equal(result, expected, exact=True)
示例5: test_contains
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import CategoricalIndex [as 别名]
def test_contains(self):
ci = self.create_index(categories=list('cabdef'))
assert 'a' in ci
assert 'z' not in ci
assert 'e' not in ci
assert np.nan not in ci
# assert codes NOT in index
assert 0 not in ci
assert 1 not in ci
ci = CategoricalIndex(
list('aabbca') + [np.nan], categories=list('cabdef'))
assert np.nan in ci
示例6: test_delete
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import CategoricalIndex [as 别名]
def test_delete(self):
ci = self.create_index()
categories = ci.categories
result = ci.delete(0)
expected = CategoricalIndex(list('abbca'), categories=categories)
tm.assert_index_equal(result, expected, exact=True)
result = ci.delete(-1)
expected = CategoricalIndex(list('aabbc'), categories=categories)
tm.assert_index_equal(result, expected, exact=True)
with pytest.raises((IndexError, ValueError)):
# Either depending on NumPy version
ci.delete(10)
示例7: test_astype
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import CategoricalIndex [as 别名]
def test_astype(self):
ci = self.create_index()
result = ci.astype(object)
tm.assert_index_equal(result, Index(np.array(ci)))
# this IS equal, but not the same class
assert result.equals(ci)
assert isinstance(result, Index)
assert not isinstance(result, CategoricalIndex)
# interval
ii = IntervalIndex.from_arrays(left=[-0.001, 2.0],
right=[2, 4],
closed='right')
ci = CategoricalIndex(Categorical.from_codes(
[0, 1, -1], categories=ii, ordered=True))
result = ci.astype('interval')
expected = ii.take([0, 1, -1])
tm.assert_index_equal(result, expected)
result = IntervalIndex(result.values)
tm.assert_index_equal(result, expected)
示例8: test_repr_roundtrip
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import CategoricalIndex [as 别名]
def test_repr_roundtrip(self):
ci = CategoricalIndex(['a', 'b'], categories=['a', 'b'], ordered=True)
str(ci)
tm.assert_index_equal(eval(repr(ci)), ci, exact=True)
# formatting
if PY3:
str(ci)
else:
compat.text_type(ci)
# long format
# this is not reprable
ci = CategoricalIndex(np.random.randint(0, 5, size=100))
if PY3:
str(ci)
else:
compat.text_type(ci)
示例9: test_isin
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import CategoricalIndex [as 别名]
def test_isin(self):
ci = CategoricalIndex(
list('aabca') + [np.nan], categories=['c', 'a', 'b'])
tm.assert_numpy_array_equal(
ci.isin(['c']),
np.array([False, False, False, True, False, False]))
tm.assert_numpy_array_equal(
ci.isin(['c', 'a', 'b']), np.array([True] * 5 + [False]))
tm.assert_numpy_array_equal(
ci.isin(['c', 'a', 'b', np.nan]), np.array([True] * 6))
# mismatched categorical -> coerced to ndarray so doesn't matter
result = ci.isin(ci.set_categories(list('abcdefghi')))
expected = np.array([True] * 6)
tm.assert_numpy_array_equal(result, expected)
result = ci.isin(ci.set_categories(list('defghi')))
expected = np.array([False] * 5 + [True])
tm.assert_numpy_array_equal(result, expected)
示例10: test_categorical_preserves_tz
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import CategoricalIndex [as 别名]
def test_categorical_preserves_tz(self):
# GH#18664 retain tz when going DTI-->Categorical-->DTI
# TODO: parametrize over DatetimeIndex/DatetimeArray
# once CategoricalIndex(DTA) works
dti = pd.DatetimeIndex(
[pd.NaT, '2015-01-01', '1999-04-06 15:14:13', '2015-01-01'],
tz='US/Eastern')
ci = pd.CategoricalIndex(dti)
carr = pd.Categorical(dti)
cser = pd.Series(ci)
for obj in [ci, carr, cser]:
result = pd.DatetimeIndex(obj)
tm.assert_index_equal(result, dti)
示例11: test_map_dictlike
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import CategoricalIndex [as 别名]
def test_map_dictlike(idx, mapper):
if isinstance(idx, (pd.CategoricalIndex, pd.IntervalIndex)):
pytest.skip("skipping tests for {}".format(type(idx)))
identity = mapper(idx.values, idx)
# we don't infer to UInt64 for a dict
if isinstance(idx, pd.UInt64Index) and isinstance(identity, dict):
expected = idx.astype('int64')
else:
expected = idx
result = idx.map(identity)
tm.assert_index_equal(result, expected)
# empty mappable
expected = pd.Index([np.nan] * len(idx))
result = idx.map(mapper(expected, idx))
tm.assert_index_equal(result, expected)
示例12: test_numpy_argsort
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import CategoricalIndex [as 别名]
def test_numpy_argsort(idx):
result = np.argsort(idx)
expected = idx.argsort()
tm.assert_numpy_array_equal(result, expected)
# these are the only two types that perform
# pandas compatibility input validation - the
# rest already perform separate (or no) such
# validation via their 'values' attribute as
# defined in pandas.core.indexes/base.py - they
# cannot be changed at the moment due to
# backwards compatibility concerns
if isinstance(type(idx), (CategoricalIndex, RangeIndex)):
msg = "the 'axis' parameter is not supported"
with pytest.raises(ValueError, match=msg):
np.argsort(idx, axis=1)
msg = "the 'kind' parameter is not supported"
with pytest.raises(ValueError, match=msg):
np.argsort(idx, kind='mergesort')
msg = "the 'order' parameter is not supported"
with pytest.raises(ValueError, match=msg):
np.argsort(idx, order=('a', 'b'))
示例13: test_from_arrays_index_series_categorical
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import CategoricalIndex [as 别名]
def test_from_arrays_index_series_categorical():
# GH13743
idx1 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"),
ordered=False)
idx2 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"),
ordered=True)
result = pd.MultiIndex.from_arrays([idx1, idx2])
tm.assert_index_equal(result.get_level_values(0), idx1)
tm.assert_index_equal(result.get_level_values(1), idx2)
result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)])
tm.assert_index_equal(result2.get_level_values(0), idx1)
tm.assert_index_equal(result2.get_level_values(1), idx2)
result3 = pd.MultiIndex.from_arrays([idx1.values, idx2.values])
tm.assert_index_equal(result3.get_level_values(0), idx1)
tm.assert_index_equal(result3.get_level_values(1), idx2)
示例14: test_dataframe_dummies_preserve_categorical_dtype
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import CategoricalIndex [as 别名]
def test_dataframe_dummies_preserve_categorical_dtype(self, dtype):
# GH13854
for ordered in [False, True]:
cat = pd.Categorical(list("xy"), categories=list("xyz"),
ordered=ordered)
result = get_dummies(cat, dtype=dtype)
data = np.array([[1, 0, 0], [0, 1, 0]],
dtype=self.effective_dtype(dtype))
cols = pd.CategoricalIndex(cat.categories,
categories=cat.categories,
ordered=ordered)
expected = DataFrame(data, columns=cols,
dtype=self.effective_dtype(dtype))
tm.assert_frame_equal(result, expected)
示例15: test_preserve_categorical_dtype
# 需要导入模块: import pandas [as 别名]
# 或者: from pandas import CategoricalIndex [as 别名]
def test_preserve_categorical_dtype(self):
# GH13854
for ordered in [False, True]:
cidx = pd.CategoricalIndex(list("xyz"), ordered=ordered)
midx = pd.MultiIndex(levels=[['a'], cidx],
codes=[[0, 0], [0, 1]])
df = DataFrame([[10, 11]], index=midx)
expected = DataFrame([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]],
index=midx, columns=cidx)
from pandas.core.reshape.reshape import make_axis_dummies
result = make_axis_dummies(df)
tm.assert_frame_equal(result, expected)
result = make_axis_dummies(df, transform=lambda x: x)
tm.assert_frame_equal(result, expected)