本文整理汇总了Python中optimization.create_optimizer方法的典型用法代码示例。如果您正苦于以下问题:Python optimization.create_optimizer方法的具体用法?Python optimization.create_optimizer怎么用?Python optimization.create_optimizer使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类optimization
的用法示例。
在下文中一共展示了optimization.create_optimizer方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: model_fn_builder
# 需要导入模块: import optimization [as 别名]
# 或者: from optimization import create_optimizer [as 别名]
def model_fn_builder(num_labels, learning_rate, num_train_steps,
num_warmup_steps, use_tpu, bert_hub_module_handle):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
label_ids = features["label_ids"]
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
(total_loss, per_example_loss, logits, probabilities) = create_model(
is_training, input_ids, input_mask, segment_ids, label_ids, num_labels,
bert_hub_module_handle)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op)
elif mode == tf.estimator.ModeKeys.EVAL:
def metric_fn(per_example_loss, label_ids, logits):
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
accuracy = tf.metrics.accuracy(label_ids, predictions)
loss = tf.metrics.mean(per_example_loss)
return {
"eval_accuracy": accuracy,
"eval_loss": loss,
}
eval_metrics = (metric_fn, [per_example_loss, label_ids, logits])
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
eval_metrics=eval_metrics)
elif mode == tf.estimator.ModeKeys.PREDICT:
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode, predictions={"probabilities": probabilities})
else:
raise ValueError(
"Only TRAIN, EVAL and PREDICT modes are supported: %s" % (mode))
return output_spec
return model_fn
开发者ID:Nagakiran1,项目名称:Extending-Google-BERT-as-Question-and-Answering-model-and-Chatbot,代码行数:59,代码来源:run_classifier_with_tfhub.py
示例2: model_fn_builder
# 需要导入模块: import optimization [as 别名]
# 或者: from optimization import create_optimizer [as 别名]
def model_fn_builder(num_labels, learning_rate, num_train_steps,
num_warmup_steps, use_tpu, bert_hub_module_handle):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
tf.compat.v1.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.compat.v1.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
label_ids = features["label_ids"]
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
(total_loss, per_example_loss, logits, probabilities) = create_model(
is_training, input_ids, input_mask, segment_ids, label_ids, num_labels,
bert_hub_module_handle)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
output_spec = tf.compat.v1.estimator.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op)
elif mode == tf.estimator.ModeKeys.EVAL:
def metric_fn(per_example_loss, label_ids, logits):
predictions = tf.argmax(input=logits, axis=-1, output_type=tf.int32)
accuracy = tf.compat.v1.metrics.accuracy(label_ids, predictions)
loss = tf.compat.v1.metrics.mean(per_example_loss)
return {
"eval_accuracy": accuracy,
"eval_loss": loss,
}
eval_metrics = (metric_fn, [per_example_loss, label_ids, logits])
output_spec = tf.compat.v1.estimator.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
eval_metrics=eval_metrics)
elif mode == tf.estimator.ModeKeys.PREDICT:
output_spec = tf.compat.v1.estimator.tpu.TPUEstimatorSpec(
mode=mode, predictions={"probabilities": probabilities})
else:
raise ValueError(
"Only TRAIN, EVAL and PREDICT modes are supported: %s" % (mode))
return output_spec
return model_fn
示例3: model_fn_builder
# 需要导入模块: import optimization [as 别名]
# 或者: from optimization import create_optimizer [as 别名]
def model_fn_builder(num_labels, learning_rate, num_train_steps,
num_warmup_steps, use_tpu, bert_hub_module_handle):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
label_ids = features["label_ids"]
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
(total_loss, per_example_loss, logits) = create_model(
is_training, input_ids, input_mask, segment_ids, label_ids, num_labels,
bert_hub_module_handle)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op)
elif mode == tf.estimator.ModeKeys.EVAL:
def metric_fn(per_example_loss, label_ids, logits):
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
accuracy = tf.metrics.accuracy(label_ids, predictions)
loss = tf.metrics.mean(per_example_loss)
return {
"eval_accuracy": accuracy,
"eval_loss": loss,
}
eval_metrics = (metric_fn, [per_example_loss, label_ids, logits])
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
eval_metrics=eval_metrics)
else:
raise ValueError("Only TRAIN and EVAL modes are supported: %s" % (mode))
return output_spec
return model_fn
示例4: model_fn_builder
# 需要导入模块: import optimization [as 别名]
# 或者: from optimization import create_optimizer [as 别名]
def model_fn_builder(num_labels, learning_rate, num_train_steps,
num_warmup_steps, use_tpu):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
label_ids = features["label_ids"]
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
(total_loss, per_example_loss, logits) = create_model(
is_training, input_ids, input_mask, segment_ids, label_ids, num_labels)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op)
elif mode == tf.estimator.ModeKeys.EVAL:
def metric_fn(per_example_loss, label_ids, logits):
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
accuracy = tf.metrics.accuracy(label_ids, predictions)
loss = tf.metrics.mean(per_example_loss)
return {
"eval_accuracy": accuracy,
"eval_loss": loss,
}
eval_metrics = (metric_fn, [per_example_loss, label_ids, logits])
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
eval_metrics=eval_metrics)
else:
raise ValueError("Only TRAIN and EVAL modes are supported: %s" % (mode))
return output_spec
return model_fn