当前位置: 首页>>代码示例>>Python>>正文


Python optimization.create_optimizer方法代码示例

本文整理汇总了Python中optimization.create_optimizer方法的典型用法代码示例。如果您正苦于以下问题:Python optimization.create_optimizer方法的具体用法?Python optimization.create_optimizer怎么用?Python optimization.create_optimizer使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在optimization的用法示例。


在下文中一共展示了optimization.create_optimizer方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: model_fn_builder

# 需要导入模块: import optimization [as 别名]
# 或者: from optimization import create_optimizer [as 别名]
def model_fn_builder(num_labels, learning_rate, num_train_steps,
                     num_warmup_steps, use_tpu, bert_hub_module_handle):
  """Returns `model_fn` closure for TPUEstimator."""

  def model_fn(features, labels, mode, params):  # pylint: disable=unused-argument
    """The `model_fn` for TPUEstimator."""

    tf.logging.info("*** Features ***")
    for name in sorted(features.keys()):
      tf.logging.info("  name = %s, shape = %s" % (name, features[name].shape))

    input_ids = features["input_ids"]
    input_mask = features["input_mask"]
    segment_ids = features["segment_ids"]
    label_ids = features["label_ids"]

    is_training = (mode == tf.estimator.ModeKeys.TRAIN)

    (total_loss, per_example_loss, logits, probabilities) = create_model(
        is_training, input_ids, input_mask, segment_ids, label_ids, num_labels,
        bert_hub_module_handle)

    output_spec = None
    if mode == tf.estimator.ModeKeys.TRAIN:
      train_op = optimization.create_optimizer(
          total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)

      output_spec = tf.contrib.tpu.TPUEstimatorSpec(
          mode=mode,
          loss=total_loss,
          train_op=train_op)
    elif mode == tf.estimator.ModeKeys.EVAL:

      def metric_fn(per_example_loss, label_ids, logits):
        predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
        accuracy = tf.metrics.accuracy(label_ids, predictions)
        loss = tf.metrics.mean(per_example_loss)
        return {
            "eval_accuracy": accuracy,
            "eval_loss": loss,
        }

      eval_metrics = (metric_fn, [per_example_loss, label_ids, logits])
      output_spec = tf.contrib.tpu.TPUEstimatorSpec(
          mode=mode,
          loss=total_loss,
          eval_metrics=eval_metrics)
    elif mode == tf.estimator.ModeKeys.PREDICT:
      output_spec = tf.contrib.tpu.TPUEstimatorSpec(
          mode=mode, predictions={"probabilities": probabilities})
    else:
      raise ValueError(
          "Only TRAIN, EVAL and PREDICT modes are supported: %s" % (mode))

    return output_spec

  return model_fn 
开发者ID:Nagakiran1,项目名称:Extending-Google-BERT-as-Question-and-Answering-model-and-Chatbot,代码行数:59,代码来源:run_classifier_with_tfhub.py

示例2: model_fn_builder

# 需要导入模块: import optimization [as 别名]
# 或者: from optimization import create_optimizer [as 别名]
def model_fn_builder(num_labels, learning_rate, num_train_steps,
                     num_warmup_steps, use_tpu, bert_hub_module_handle):
  """Returns `model_fn` closure for TPUEstimator."""

  def model_fn(features, labels, mode, params):  # pylint: disable=unused-argument
    """The `model_fn` for TPUEstimator."""

    tf.compat.v1.logging.info("*** Features ***")
    for name in sorted(features.keys()):
      tf.compat.v1.logging.info("  name = %s, shape = %s" % (name, features[name].shape))

    input_ids = features["input_ids"]
    input_mask = features["input_mask"]
    segment_ids = features["segment_ids"]
    label_ids = features["label_ids"]

    is_training = (mode == tf.estimator.ModeKeys.TRAIN)

    (total_loss, per_example_loss, logits, probabilities) = create_model(
        is_training, input_ids, input_mask, segment_ids, label_ids, num_labels,
        bert_hub_module_handle)

    output_spec = None
    if mode == tf.estimator.ModeKeys.TRAIN:
      train_op = optimization.create_optimizer(
          total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)

      output_spec = tf.compat.v1.estimator.tpu.TPUEstimatorSpec(
          mode=mode,
          loss=total_loss,
          train_op=train_op)
    elif mode == tf.estimator.ModeKeys.EVAL:

      def metric_fn(per_example_loss, label_ids, logits):
        predictions = tf.argmax(input=logits, axis=-1, output_type=tf.int32)
        accuracy = tf.compat.v1.metrics.accuracy(label_ids, predictions)
        loss = tf.compat.v1.metrics.mean(per_example_loss)
        return {
            "eval_accuracy": accuracy,
            "eval_loss": loss,
        }

      eval_metrics = (metric_fn, [per_example_loss, label_ids, logits])
      output_spec = tf.compat.v1.estimator.tpu.TPUEstimatorSpec(
          mode=mode,
          loss=total_loss,
          eval_metrics=eval_metrics)
    elif mode == tf.estimator.ModeKeys.PREDICT:
      output_spec = tf.compat.v1.estimator.tpu.TPUEstimatorSpec(
          mode=mode, predictions={"probabilities": probabilities})
    else:
      raise ValueError(
          "Only TRAIN, EVAL and PREDICT modes are supported: %s" % (mode))

    return output_spec

  return model_fn 
开发者ID:IntelAI,项目名称:models,代码行数:59,代码来源:run_classifier_with_tfhub.py

示例3: model_fn_builder

# 需要导入模块: import optimization [as 别名]
# 或者: from optimization import create_optimizer [as 别名]
def model_fn_builder(num_labels, learning_rate, num_train_steps,
                     num_warmup_steps, use_tpu, bert_hub_module_handle):
  """Returns `model_fn` closure for TPUEstimator."""

  def model_fn(features, labels, mode, params):  # pylint: disable=unused-argument
    """The `model_fn` for TPUEstimator."""

    tf.logging.info("*** Features ***")
    for name in sorted(features.keys()):
      tf.logging.info("  name = %s, shape = %s" % (name, features[name].shape))

    input_ids = features["input_ids"]
    input_mask = features["input_mask"]
    segment_ids = features["segment_ids"]
    label_ids = features["label_ids"]

    is_training = (mode == tf.estimator.ModeKeys.TRAIN)

    (total_loss, per_example_loss, logits) = create_model(
        is_training, input_ids, input_mask, segment_ids, label_ids, num_labels,
        bert_hub_module_handle)

    output_spec = None
    if mode == tf.estimator.ModeKeys.TRAIN:
      train_op = optimization.create_optimizer(
          total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)

      output_spec = tf.contrib.tpu.TPUEstimatorSpec(
          mode=mode,
          loss=total_loss,
          train_op=train_op)
    elif mode == tf.estimator.ModeKeys.EVAL:

      def metric_fn(per_example_loss, label_ids, logits):
        predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
        accuracy = tf.metrics.accuracy(label_ids, predictions)
        loss = tf.metrics.mean(per_example_loss)
        return {
            "eval_accuracy": accuracy,
            "eval_loss": loss,
        }

      eval_metrics = (metric_fn, [per_example_loss, label_ids, logits])
      output_spec = tf.contrib.tpu.TPUEstimatorSpec(
          mode=mode,
          loss=total_loss,
          eval_metrics=eval_metrics)
    else:
      raise ValueError("Only TRAIN and EVAL modes are supported: %s" % (mode))

    return output_spec

  return model_fn 
开发者ID:cjymz886,项目名称:text_bert_cnn,代码行数:55,代码来源:run_classifier_with_tfhub.py

示例4: model_fn_builder

# 需要导入模块: import optimization [as 别名]
# 或者: from optimization import create_optimizer [as 别名]
def model_fn_builder(num_labels, learning_rate, num_train_steps,
                     num_warmup_steps, use_tpu):
  """Returns `model_fn` closure for TPUEstimator."""

  def model_fn(features, labels, mode, params):  # pylint: disable=unused-argument
    """The `model_fn` for TPUEstimator."""

    tf.logging.info("*** Features ***")
    for name in sorted(features.keys()):
      tf.logging.info("  name = %s, shape = %s" % (name, features[name].shape))

    input_ids = features["input_ids"]
    input_mask = features["input_mask"]
    segment_ids = features["segment_ids"]
    label_ids = features["label_ids"]

    is_training = (mode == tf.estimator.ModeKeys.TRAIN)

    (total_loss, per_example_loss, logits) = create_model(
        is_training, input_ids, input_mask, segment_ids, label_ids, num_labels)

    output_spec = None
    if mode == tf.estimator.ModeKeys.TRAIN:
      train_op = optimization.create_optimizer(
          total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)

      output_spec = tf.contrib.tpu.TPUEstimatorSpec(
          mode=mode,
          loss=total_loss,
          train_op=train_op)
    elif mode == tf.estimator.ModeKeys.EVAL:

      def metric_fn(per_example_loss, label_ids, logits):
        predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
        accuracy = tf.metrics.accuracy(label_ids, predictions)
        loss = tf.metrics.mean(per_example_loss)
        return {
            "eval_accuracy": accuracy,
            "eval_loss": loss,
        }

      eval_metrics = (metric_fn, [per_example_loss, label_ids, logits])
      output_spec = tf.contrib.tpu.TPUEstimatorSpec(
          mode=mode,
          loss=total_loss,
          eval_metrics=eval_metrics)
    else:
      raise ValueError("Only TRAIN and EVAL modes are supported: %s" % (mode))

    return output_spec

  return model_fn 
开发者ID:sliderSun,项目名称:pynlp,代码行数:54,代码来源:run_classifier_with_tfhub.py


注:本文中的optimization.create_optimizer方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。