本文整理汇总了Python中onnx.load方法的典型用法代码示例。如果您正苦于以下问题:Python onnx.load方法的具体用法?Python onnx.load怎么用?Python onnx.load使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类onnx
的用法示例。
在下文中一共展示了onnx.load方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_rewrite_onnx_file
# 需要导入模块: import onnx [as 别名]
# 或者: from onnx import load [as 别名]
def test_rewrite_onnx_file():
input_rewriter.rewrite_onnx_file(
'out/backprop_test_mnist_mlp/model.onnx',
'out/backprop_test_mnist_mlp/model_bs3.onnx',
[input_rewriter.Type(shape=(3, 784)),
input_rewriter.Type(shape=(3, 10))])
xmodel = onnx.load('out/backprop_test_mnist_mlp/model_bs3.onnx')
xgraph = xmodel.graph
def get_shape(vi):
return tuple([d.dim_value for d in vi.type.tensor_type.shape.dim])
inputs = _get_inputs(xgraph)
assert 1 == inputs[0].type.tensor_type.elem_type
assert 1 == inputs[1].type.tensor_type.elem_type
assert (3, 784) == get_shape(inputs[0])
assert (3, 10) == get_shape(inputs[1])
assert 1 == xgraph.output[0].type.tensor_type.elem_type
assert () == get_shape(xgraph.output[0])
for init in xgraph.initializer:
assert 1 == init.data_type
示例2: test_rewrite_onnx_testdir
# 需要导入模块: import onnx [as 别名]
# 或者: from onnx import load [as 别名]
def test_rewrite_onnx_testdir():
input_rewriter.rewrite_onnx_testdir(
'out/backprop_test_mnist_mlp',
'out/backprop_test_mnist_mlp_fp64',
[input_rewriter.Type(dtype=np.float64),
input_rewriter.Type(dtype=np.float64)])
xmodel = onnx.load('out/backprop_test_mnist_mlp_fp64/model.onnx')
xgraph = xmodel.graph
assert 11 == xgraph.input[0].type.tensor_type.elem_type
assert 11 == xgraph.input[1].type.tensor_type.elem_type
assert 11 == xgraph.output[0].type.tensor_type.elem_type
for init in xgraph.initializer:
assert 11 == init.data_type
for tensor_proto in glob.glob(
'out/backprop_test_mnist_mlp_fp64/test_data_set_0/*.pb'):
xtensor = onnx.load_tensor(tensor_proto)
assert 11 == xtensor.data_type
示例3: _get_onnx_outputs_info
# 需要导入模块: import onnx [as 别名]
# 或者: from onnx import load [as 别名]
def _get_onnx_outputs_info(model): # type: (...) -> Dict[Text, EdgeInfo]
"""
Takes in an onnx model and returns a dictionary
of onnx output names mapped to a tuple that is (output_name, type, shape)
"""
if isinstance(model, str):
onnx_model = onnx.load(model)
elif isinstance(model, onnx.ModelProto):
onnx_model = model
graph = onnx_model.graph
onnx_output_dict = {}
for o in graph.output:
out = _input_from_onnx_input(o)
onnx_output_dict[out[0]] = out
return onnx_output_dict
示例4: convert
# 需要导入模块: import onnx [as 别名]
# 或者: from onnx import load [as 别名]
def convert(infile, outfile, **kwargs):
"""Convert pb.
Args:
infile: Input path.
outfile: Output path.
**kwargs: Other args for converting.
Returns:
None.
"""
logging_level = kwargs.get("logging_level", "INFO")
common.logger.setLevel(logging_level)
common.logger.handlers[0].setLevel(logging_level)
common.logger.info("Start converting onnx pb to tf pb:")
onnx_model = onnx.load(infile)
tf_rep = backend.prepare(onnx_model, **kwargs)
tf_rep.export_graph(outfile)
common.logger.info("Converting completes successfully.")
示例5: test_output_grad
# 需要导入模块: import onnx [as 别名]
# 或者: from onnx import load [as 别名]
def test_output_grad(tmpdir, model, x, train, disable_experimental_warning):
path = str(tmpdir)
export_testcase(model, (x,), path, output_grad=True, train=train)
model_filename = os.path.join(path, 'model.onnx')
assert os.path.isfile(model_filename)
assert os.path.isfile(os.path.join(path, 'test_data_set_0', 'input_0.pb'))
assert os.path.isfile(os.path.join(path, 'test_data_set_0', 'output_0.pb'))
onnx_model = onnx.load(model_filename)
initializer_names = {i.name for i in onnx_model.graph.initializer}
# 10 gradient files should be there
for i in range(12):
tensor_filename = os.path.join(
path, 'test_data_set_0', 'gradient_{}.pb'.format(i))
assert os.path.isfile(tensor_filename)
tensor = onnx.load_tensor(tensor_filename)
assert tensor.name.startswith('param_')
assert tensor.name in initializer_names
assert not os.path.isfile(
os.path.join(path, 'test_data_set_0', 'gradient_12.pb'))
示例6: from_save
# 需要导入模块: import onnx [as 别名]
# 或者: from onnx import load [as 别名]
def from_save(cls, name:str, model_builder:ModelBuilder) -> AbsModel:
r'''
Instantiated a :class:`~lumin.nn.models.model.Model` and load saved state from file.
Arguments:
name: name of file containing saved state
model_builder: :class:`~lumin.nn.models.model_builder.ModelBuilder` which was used to construct the network
Returns:
Instantiated :class:`~lumin.nn.models.model.Model` with network weights, optimiser state, and input mask loaded from saved state
Examples::
>>> model = Model.from_save('weights/model.h5', model_builder)
'''
m = cls(model_builder)
m.load(name)
return m
示例7: load
# 需要导入模块: import onnx [as 别名]
# 或者: from onnx import load [as 别名]
def load(self, name:str, model_builder:ModelBuilder=None) -> None:
r'''
Load model, optimiser, and input mask states from file
Arguments:
name: name of save file
model_builder: if :class:`~lumin.nn.models.model.Model` was not initialised with a :class:`~lumin.nn.models.model_builder.ModelBuilder`, you will need to pass one here
'''
# TODO: update map location when device choice is changable by user
if model_builder is not None: self.model, self.opt, self.loss, self.input_mask = model_builder.get_model()
state = torch.load(name, map_location='cuda' if torch.cuda.is_available() else 'cpu')
self.model.load_state_dict(state['model'])
self.opt.load_state_dict(state['opt'])
self.input_mask = state['input_mask']
self.objective = self.model_builder.objective if model_builder is None else model_builder.objective
示例8: export2tfpb
# 需要导入模块: import onnx [as 别名]
# 或者: from onnx import load [as 别名]
def export2tfpb(self, name:str, bs:int=1) -> None:
r'''
Export network to Tensorflow ProtocolBuffer format, via ONNX.
Note that ONNX expects a fixed batch size (bs) which is the number of datapoints your wish to pass through the model concurrently.
Arguments:
name: filename for exported file
bs: batch size for exported models
'''
import onnx
from onnx_tf.backend import prepare
warnings.warn("""Tensorflow ProtocolBuffer export of LUMIN models (via ONNX) has not been fully explored or sufficiently tested yet.
Please use with caution, and report any trouble""")
self.export2onnx(name, bs)
m = onnx.load(f'{name}.onnx')
tf_rep = prepare(m)
tf_rep.export_graph(f'{name}.pb')
示例9: _get_onnx_outputs_info
# 需要导入模块: import onnx [as 别名]
# 或者: from onnx import load [as 别名]
def _get_onnx_outputs_info(model): # type: (...) -> Dict[Text, EdgeInfo]
"""
Takes in an onnx model and returns a dictionary
of onnx output names mapped to a tuple that is (output_name, type, shape)
"""
if isinstance(model, _string_types):
onnx_model = onnx.load(model)
elif isinstance(model, onnx.ModelProto):
onnx_model = model
graph = onnx_model.graph
onnx_output_dict = {}
for o in graph.output:
out = _input_from_onnx_input(o)
onnx_output_dict[out[0]] = out
return onnx_output_dict
示例10: LoadLabels
# 需要导入模块: import onnx [as 别名]
# 或者: from onnx import load [as 别名]
def LoadLabels(label_file):
"""load labels from file"""
if not os.path.isfile(label_file):
logging.error("Can not find lable file {}.".format(label_file))
return None
labels = {}
with open(label_file) as l:
label_lines = [line.rstrip('\n') for line in l.readlines()]
for line in label_lines:
result, code = line.partition(" ")[::2]
if code and result:
result = result.strip()
result = result[result.index("/")+1:]
if result in labels:
logging.warning("Repeated name {0} for code {1}in label file. Ignored!"
.format(result, code))
else:
labels[result] = int(code.strip())
return labels
示例11: LoadValidation
# 需要导入模块: import onnx [as 别名]
# 或者: from onnx import load [as 别名]
def LoadValidation(validation_file):
"""load validation file"""
if not os.path.isfile(validation_file):
logging.error("Can not find validation file {}."
.format(validation_file))
return None
validation = {}
with open(validation_file) as v:
validation_lines = [line.rstrip('\n') for line in v.readlines()]
for line in validation_lines:
name, code = line.partition(" ")[::2]
if name and code:
name = name.strip()
if name in validation:
logging.warning("Repeated name {0} for code {1} in"
" validation file. Ignored!"
.format(name, code))
else:
validation[name] = int(code.strip())
return validation
示例12: onnx_inference
# 需要导入模块: import onnx [as 别名]
# 或者: from onnx import load [as 别名]
def onnx_inference(args):
# Load the ONNX model
model = onnx.load("models/deepspeech_{}.onnx".format(args.continue_from))
# Check that the IR is well formed
onnx.checker.check_model(model)
onnx.helper.printable_graph(model.graph)
print("model checked, preparing backend!")
rep = backend.prepare(model, device="CPU") # or "CPU"
print("running inference!")
# Hard coded input dim
inputs = np.random.randn(16, 1, 161, 129).astype(np.float32)
start = time.time()
outputs = rep.run(inputs)
print("time used: {}".format(time.time() - start))
# To run networks with more than one input, pass a tuple
# rather than a single numpy ndarray.
print(outputs[0])
示例13: stylize_onnx_caffe2
# 需要导入模块: import onnx [as 别名]
# 或者: from onnx import load [as 别名]
def stylize_onnx_caffe2(content_image, args):
"""
Read ONNX model and run it using Caffe2
"""
assert not args.export_onnx
import onnx
import onnx_caffe2.backend
model = onnx.load(args.model)
prepared_backend = onnx_caffe2.backend.prepare(model, device='CUDA' if args.cuda else 'CPU')
inp = {model.graph.input[0].name: content_image.numpy()}
c2_out = prepared_backend.run(inp)[0]
return torch.from_numpy(c2_out)
示例14: import_model
# 需要导入模块: import onnx [as 别名]
# 或者: from onnx import load [as 别名]
def import_model(model_file):
"""Imports the supplied ONNX model file into MXNet symbol and parameters.
Parameters
----------
model_file : ONNX model file name
Returns
-------
sym : mx.symbol
Compatible mxnet symbol
params : dict of str to mx.ndarray
Dict of converted parameters stored in mx.ndarray format
"""
graph = GraphProto()
# loads model file and returns ONNX protobuf object
model_proto = onnx.load(model_file)
sym, params = graph.from_onnx(model_proto.graph)
return sym, params
示例15: __init__
# 需要导入模块: import onnx [as 别名]
# 或者: from onnx import load [as 别名]
def __init__(self, onnx_model_proto, make_deepcopy=False):
"""Creates a ModelWrapper instance.
onnx_model_proto can be either a ModelProto instance, or a string
with the path to a stored .onnx file on disk, or serialized bytes.
The make_deepcopy option controls whether a deep copy of the ModelProto
is made internally.
"""
if isinstance(onnx_model_proto, str):
self._model_proto = onnx.load(onnx_model_proto)
elif isinstance(onnx_model_proto, bytes):
self._model_proto = onnx.load_from_string(onnx_model_proto)
else:
if make_deepcopy:
self._model_proto = copy.deepcopy(onnx_model_proto)
else:
self._model_proto = onnx_model_proto