本文整理汇总了Python中onnx.helper.make_tensor方法的典型用法代码示例。如果您正苦于以下问题:Python helper.make_tensor方法的具体用法?Python helper.make_tensor怎么用?Python helper.make_tensor使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类onnx.helper
的用法示例。
在下文中一共展示了helper.make_tensor方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _create_param_tensors
# 需要导入模块: from onnx import helper [as 别名]
# 或者: from onnx.helper import make_tensor [as 别名]
def _create_param_tensors(self, conv_params, param_category, suffix):
"""Creates the initializers with weights from the weights file together with
the input tensors.
Keyword arguments:
conv_params -- a ConvParams object
param_category -- the category of parameters to be created ('bn' or 'conv')
suffix -- a string determining the sub-type of above param_category (e.g.,
'weights' or 'bias')
"""
param_name, param_data, param_data_shape = self._load_one_param_type(
conv_params, param_category, suffix)
initializer_tensor = helper.make_tensor(
param_name, TensorProto.FLOAT, param_data_shape, param_data)
input_tensor = helper.make_tensor_value_info(
param_name, TensorProto.FLOAT, param_data_shape)
return initializer_tensor, input_tensor
示例2: load_resize_scales
# 需要导入模块: from onnx import helper [as 别名]
# 或者: from onnx.helper import make_tensor [as 别名]
def load_resize_scales(self, resize_params):
"""Returns the initializers with the value of the scale input
tensor given by resize_params.
Keyword argument:
resize_params -- a ResizeParams object
"""
initializer = list()
inputs = list()
name = resize_params.generate_param_name()
shape = resize_params.value.shape
data = resize_params.value
scale_init = helper.make_tensor(
name, TensorProto.FLOAT, shape, data)
scale_input = helper.make_tensor_value_info(
name, TensorProto.FLOAT, shape)
initializer.append(scale_init)
inputs.append(scale_input)
return initializer, inputs
示例3: add_const_proto_explicit
# 需要导入模块: from onnx import helper [as 别名]
# 或者: from onnx.helper import make_tensor [as 别名]
def add_const_proto_explicit(self,
name,
value,
np_dtype=None,
tf_dtype=None,
onnx_dtype=None):
onnx_dtype = any_dtype_to_onnx_dtype(
np_dtype=np_dtype, tf_dtype=tf_dtype, onnx_dtype=onnx_dtype)
const_dim = len(value.shape)
if const_dim == 0:
raw_values = [value.tolist()]
values = [value]
else:
raw_values = value.flatten().tolist()
values = value
shape = np.array(values).shape
const_proto = make_tensor(
name=name, data_type=onnx_dtype, dims=shape, vals=raw_values)
self._consts_proto.append(const_proto)
示例4: test_attribute_wrapper
# 需要导入模块: from onnx import helper [as 别名]
# 或者: from onnx.helper import make_tensor [as 别名]
def test_attribute_wrapper():
def attribute_value_test(attribute_value):
node = make_node('Abs', ['X'], [], name='test_node', test_attribute=attribute_value)
model = make_model(make_graph([node], 'test_graph', [
make_tensor_value_info('X', onnx.TensorProto.FLOAT, [1, 2]),
], []), producer_name='ngraph')
wrapped_attribute = ModelWrapper(model).graph.node[0].get_attribute('test_attribute')
return wrapped_attribute.get_value()
tensor = make_tensor('test_tensor', onnx.TensorProto.FLOAT, [1], [1])
assert attribute_value_test(1) == 1
assert type(attribute_value_test(1)) == np.long
assert attribute_value_test(1.0) == 1.0
assert type(attribute_value_test(1.0)) == np.float
assert attribute_value_test('test') == 'test'
assert attribute_value_test(tensor)._proto == tensor
assert attribute_value_test([1, 2, 3]) == [1, 2, 3]
assert attribute_value_test([1.0, 2.0, 3.0]) == [1.0, 2.0, 3.0]
assert attribute_value_test(['test1', 'test2']) == ['test1', 'test2']
assert attribute_value_test([tensor, tensor])[1]._proto == tensor
示例5: make_node_test_model
# 需要导入模块: from onnx import helper [as 别名]
# 或者: from onnx.helper import make_tensor [as 别名]
def make_node_test_model(node, inputs, use_weights=True):
# HACK TODO: The output info is unknown here; not sure what the best solution is
output_dtype = np.float32 # Dummy value only
output_shape = [-99] # Dummy value only
graph_inputs = [onnx_helper.make_tensor_value_info(
name, np2onnx_dtype(array.dtype), array.shape)
for name, array in zip(node.input, inputs)]
graph_outputs = [onnx_helper.make_tensor_value_info(
name, np2onnx_dtype(output_dtype), output_shape)
for name in node.output]
if use_weights:
# Add initializers for all inputs except the first
initializers = [onnx_helper.make_tensor(
name, np2onnx_dtype(array.dtype), array.shape, array.flatten().tolist())
for name, array in zip(node.input[1:], inputs[1:])]
else:
initializers = []
graph = onnx_helper.make_graph(
[node], "RunNodeGraph_" + node.op_type,
graph_inputs, graph_outputs, initializer=initializers)
model = onnx_helper.make_model(graph)
return model
示例6: _make_fake_if_op
# 需要导入模块: from onnx import helper [as 别名]
# 或者: from onnx.helper import make_tensor [as 别名]
def _make_fake_if_op(self,
true_nodes, # type: Sequence[NodeProto]
false_nodes, # type: Sequence[NodeProto]
output_types # type: Sequence[Tuple[TensorProto.DataType, Sequence[int], Text]]
): # type: (...) -> List[NodeProto]
true = helper.make_tensor("condition", TensorProto.BOOL, (), [True])
true_graph = helper.make_graph(true_nodes, "true_graph", [], [])
false_graph = helper.make_graph(false_nodes, "false_graph", [], [])
if_inputs = ["condition"]
if_outputs = [name for _, _, name in output_types]
retval_nodes = [
helper.make_node("Constant", [], ["condition"], value=true),
helper.make_node("If", if_inputs, if_outputs, then_branch=true_graph,
else_branch=false_graph)
]
return retval_nodes
# fn is a function that takes a single node as argument
示例7: test_eliminate_unused_initializer_input
# 需要导入模块: from onnx import helper [as 别名]
# 或者: from onnx.helper import make_tensor [as 别名]
def test_eliminate_unused_initializer_input(self): # type: () -> None
add = helper.make_node("Add", ["X", "Y"], ["Z"])
graph = helper.make_graph(
[add],
"test",
[helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 2)),
helper.make_tensor_value_info("Y", TensorProto.FLOAT, (1, 2)),
helper.make_tensor_value_info("A", TensorProto.FLOAT, (2, 3))],
[helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 2))],
[helper.make_tensor("A", TensorProto.FLOAT,
dims=(2, 3),
vals=np.random.randn(2, 3).astype(np.float32).tobytes(),
raw=True)])
optimized_model = self._optimized(graph, ["eliminate_unused_initializer"])
assert len(list(optimized_model.graph.initializer)) == 0
assert len(optimized_model.graph.input) == 2
示例8: test_eliminate_unused_initializer_no_eliminate_output
# 需要导入模块: from onnx import helper [as 别名]
# 或者: from onnx.helper import make_tensor [as 别名]
def test_eliminate_unused_initializer_no_eliminate_output(self): # type: () -> None
add = helper.make_node("Add", ["X", "Y"], ["Z"])
graph = helper.make_graph(
[add],
"test",
[helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 2)),
helper.make_tensor_value_info("Y", TensorProto.FLOAT, (1, 2)),
helper.make_tensor_value_info("A", TensorProto.FLOAT, (2, 3))],
[helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 2)),
helper.make_tensor_value_info("A", TensorProto.FLOAT, (2, 3))],
[helper.make_tensor("A", TensorProto.FLOAT,
dims=(2, 3),
vals=np.random.randn(2, 3).astype(np.float32).tobytes(),
raw=True)])
optimized_model = self._optimized(graph, ["eliminate_unused_initializer"])
assert len(list(optimized_model.graph.initializer)) == 1
assert "Z" in [o.name for o in optimized_model.graph.output]
示例9: test_attr_repeated_tensor_proto
# 需要导入模块: from onnx import helper [as 别名]
# 或者: from onnx.helper import make_tensor [as 别名]
def test_attr_repeated_tensor_proto(self): # type: () -> None
tensors = [
helper.make_tensor(
name='a',
data_type=TensorProto.FLOAT,
dims=(1,),
vals=np.ones(1).tolist()
),
helper.make_tensor(
name='b',
data_type=TensorProto.FLOAT,
dims=(1,),
vals=np.ones(1).tolist()
)]
attr = helper.make_attribute("tensors", tensors)
self.assertEqual(attr.name, "tensors")
self.assertEqual(list(attr.tensors), tensors)
checker.check_attribute(attr)
示例10: emit_Constant
# 需要导入模块: from onnx import helper [as 别名]
# 或者: from onnx.helper import make_tensor [as 别名]
def emit_Constant(self, IR_node):
if IR_node.get_attr('value'):
value = 'np.array({}, dtype=np.float32)'.format(IR_node.get_attr('value'))
self.add_body(1, "{:15} = {}".format(
IR_node.variable_name + '_value_array',
value))
else:
self.add_body(1, "{:15} = __weights_dict['{}']['value']".format(
IR_node.variable_name + '_value_array',
IR_node.name))
self.add_body(1, "{:15} = helper.make_node('Constant', inputs=[], outputs=['{}'], value=helper.make_tensor(name='const_tensor', data_type=onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[{}.dtype], dims={}.shape, vals={}.flatten().astype(float)), name='{}')".format(
IR_node.variable_name,
IR_node.variable_name,
IR_node.variable_name + '_value_array',
IR_node.variable_name + '_value_array',
IR_node.variable_name + '_value_array',
IR_node.variable_name))
self.nodes.append(IR_node.variable_name)
示例11: emit_Mul
# 需要导入模块: from onnx import helper [as 别名]
# 或者: from onnx.helper import make_tensor [as 别名]
def emit_Mul(self, IR_node):
inputs = ', '.join("'" + self.IR_graph.get_node(i).real_variable_name + "'" for i in IR_node.in_edges)
if IR_node.name in self.weights_dict and 'weights' in self.weights_dict[IR_node.name]:
self.add_body(1,"{:15} = np.array([__weights_dict['{}']['weights']])".format(
IR_node.variable_name+'_weight_array',
IR_node.name
))
self.add_body(1, "{:15} = helper.make_node('Constant', inputs=[], outputs=['{}'], value=helper.make_tensor(name='const_tensor', data_type=onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[{}.dtype], dims={}.shape, vals={}), name='{}')".format(
IR_node.variable_name + '_weight',
IR_node.variable_name + '_weight',
IR_node.variable_name + '_weight_array',
IR_node.variable_name + '_weight_array',
IR_node.variable_name + '_weight_array',
IR_node.variable_name + '_weight'
))
inputs += ', '+''.join("'"+IR_node.variable_name +"_weight'")
self.nodes.append(IR_node.variable_name+'_weight')
self.add_body(1, "{:15} = helper.make_node('Mul', inputs=[{}], outputs=['{}'], broadcast=1, name='{}')".format(
IR_node.variable_name,
inputs,
IR_node.variable_name,
IR_node.variable_name))
self.nodes.append(IR_node.variable_name)
示例12: emit_Reshape
# 需要导入模块: from onnx import helper [as 别名]
# 或者: from onnx.helper import make_tensor [as 别名]
def emit_Reshape(self, IR_node):
shape = [item if item != -1 else 1 for item in IR_node.get_attr('shape')]
if len(shape) == 4:
shape = [shape[i] for i in [0, 3, 1, 2]]
shape_str = ', '.join('%s' % i for i in shape)
self.add_body(1, "{:15} = np.array([{}], dtype=np.int64)".format(
IR_node.variable_name + '_shape_array',
shape_str
))
self.add_body(1, "{:15} = helper.make_node('Constant', inputs=[], outputs=['{}'], value=helper.make_tensor(name='const_tensor', data_type=onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[{}.dtype], dims={}.shape, vals={}), name='{}')".format(
IR_node.variable_name + '_shape',
IR_node.variable_name + '_shape',
IR_node.variable_name + '_shape_array',
IR_node.variable_name + '_shape_array',
IR_node.variable_name + '_shape_array',
IR_node.variable_name + '_shape'))
self.add_body(1, "{:15} = helper.make_node('Reshape', inputs=['{}', '{}'], outputs=['{}'], name='{}')".format(
IR_node.variable_name,
self.parent_variable_name(IR_node),
IR_node.variable_name + '_shape',
IR_node.variable_name,
IR_node.variable_name))
self.nodes.append(IR_node.variable_name + '_shape')
self.nodes.append(IR_node.variable_name)
示例13: load_upsample_scales
# 需要导入模块: from onnx import helper [as 别名]
# 或者: from onnx.helper import make_tensor [as 别名]
def load_upsample_scales(self, upsample_params):
"""Returns the initializers with the value of the scale input
tensor given by upsample_params.
Keyword argument:
upsample_params -- a UpsampleParams object
"""
initializer = list()
inputs = list()
name = upsample_params.generate_param_name()
shape = upsample_params.value.shape
data = upsample_params.value
scale_init = helper.make_tensor(
name, TensorProto.FLOAT, shape, data)
scale_input = helper.make_tensor_value_info(
name, TensorProto.FLOAT, shape)
initializer.append(scale_init)
inputs.append(scale_input)
return initializer, inputs
示例14: _create_param_tensors
# 需要导入模块: from onnx import helper [as 别名]
# 或者: from onnx.helper import make_tensor [as 别名]
def _create_param_tensors(self, conv_params, param_category, suffix):
"""Creates the initializers with weights from the weights file together with
the input tensors.
Keyword arguments:
conv_params -- a ConvParams object
param_category -- the category of parameters to be created ('bn' or 'conv')
suffix -- a string determining the sub-type of above param_category (e.g.,
'weights' or 'bias')
"""
param_name, param_data, param_data_shape = self._load_one_param_type(
conv_params, param_category, suffix)
initializer_tensor = helper.make_tensor(param_name, TensorProto.FLOAT, param_data_shape, param_data)
input_tensor = helper.make_tensor_value_info(param_name, TensorProto.FLOAT, param_data_shape)
return initializer_tensor, input_tensor
示例15: make_shape_compatible_op
# 需要导入模块: from onnx import helper [as 别名]
# 或者: from onnx.helper import make_tensor [as 别名]
def make_shape_compatible_op(self, model):
exp_ishape = self.get_normal_input_shape()
oshape = self.get_normal_output_shape()
ishape = tuple(model.get_tensor_shape(self.onnx_node.input[0]))
assert ishape == exp_ishape, "Unexpect input shape for StreamingMaxPool."
# implement tensor with correct shape
values = np.random.randn(*oshape).astype(np.float32)
return helper.make_node(
"Constant",
inputs=[],
outputs=[self.onnx_node.output[0]],
value=helper.make_tensor(
name="const_tensor",
data_type=TensorProto.FLOAT,
dims=values.shape,
vals=values.flatten().astype(float),
),
)