当前位置: 首页>>代码示例>>Python>>正文


Python logger.benchmark_context方法代码示例

本文整理汇总了Python中official.utils.logs.logger.benchmark_context方法的典型用法代码示例。如果您正苦于以下问题:Python logger.benchmark_context方法的具体用法?Python logger.benchmark_context怎么用?Python logger.benchmark_context使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在official.utils.logs.logger的用法示例。


在下文中一共展示了logger.benchmark_context方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: from official.utils.logs import logger [as 别名]
# 或者: from official.utils.logs.logger import benchmark_context [as 别名]
def main(_):
  flags_obj = flags.FLAGS
  with logger.benchmark_context(flags_obj):
    task = TransformerTask(flags_obj)

    def _run_task(task):
      if flags_obj.mode == "train":
        task.train()
      elif flags_obj.mode == "predict":
        task.predict()
      elif flags_obj.mode == "eval":
        task.eval()
      else:
        raise ValueError("Invalid mode {}".format(flags_obj.mode))

    if flags_obj.distribution_strategy != "tpu":
      _run_task(task)
    else:
      primary_cpu_task = "/job:worker" if flags_obj.use_tpu_2vm_config else ""
      with tf.device(primary_cpu_task):
        _run_task(task) 
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:23,代码来源:transformer_main.py

示例2: main

# 需要导入模块: from official.utils.logs import logger [as 别名]
# 或者: from official.utils.logs.logger import benchmark_context [as 别名]
def main(_):
  with logger.benchmark_context(FLAGS), \
       mlperf_helper.LOGGER(FLAGS.output_ml_perf_compliance_logging):
    mlperf_helper.set_ncf_root(os.path.split(os.path.abspath(__file__))[0])
    run_ncf(FLAGS) 
开发者ID:IntelAI,项目名称:models,代码行数:7,代码来源:ncf_estimator_main.py

示例3: test_benchmark_context

# 需要导入模块: from official.utils.logs import logger [as 别名]
# 或者: from official.utils.logs.logger import benchmark_context [as 别名]
def test_benchmark_context(self, mock_config_benchmark_logger):
    mock_logger = mock.MagicMock()
    mock_config_benchmark_logger.return_value = mock_logger
    with logger.benchmark_context(None):
      tf.compat.v1.logging.info("start benchmarking")
    mock_logger.on_finish.assert_called_once_with(logger.RUN_STATUS_SUCCESS) 
开发者ID:IntelAI,项目名称:models,代码行数:8,代码来源:logger_test.py

示例4: test_benchmark_context_failure

# 需要导入模块: from official.utils.logs import logger [as 别名]
# 或者: from official.utils.logs.logger import benchmark_context [as 别名]
def test_benchmark_context_failure(self, mock_config_benchmark_logger):
    mock_logger = mock.MagicMock()
    mock_config_benchmark_logger.return_value = mock_logger
    with self.assertRaises(RuntimeError):
      with logger.benchmark_context(None):
        raise RuntimeError("training error")
    mock_logger.on_finish.assert_called_once_with(logger.RUN_STATUS_FAILURE) 
开发者ID:IntelAI,项目名称:models,代码行数:9,代码来源:logger_test.py

示例5: test_benchmark_context

# 需要导入模块: from official.utils.logs import logger [as 别名]
# 或者: from official.utils.logs.logger import benchmark_context [as 别名]
def test_benchmark_context(self, mock_config_benchmark_logger):
    mock_logger = mock.MagicMock()
    mock_config_benchmark_logger.return_value = mock_logger
    with logger.benchmark_context(None):
      tf.logging.info("start benchmarking")
    mock_logger.on_finish.assert_called_once_with(logger.RUN_STATUS_SUCCESS) 
开发者ID:rockyzhengwu,项目名称:nsfw,代码行数:8,代码来源:logger_test.py

示例6: main

# 需要导入模块: from official.utils.logs import logger [as 别名]
# 或者: from official.utils.logs.logger import benchmark_context [as 别名]
def main(_):
  with logger.benchmark_context(flags.FLAGS):
    run(flags.FLAGS) 
开发者ID:GoogleCloudPlatform,项目名称:ml-on-gcp,代码行数:5,代码来源:keras_cifar_main.py

示例7: main

# 需要导入模块: from official.utils.logs import logger [as 别名]
# 或者: from official.utils.logs.logger import benchmark_context [as 别名]
def main(_):
  with logger.benchmark_context(flags.FLAGS):
    run_cifar(flags.FLAGS) 
开发者ID:GoogleCloudPlatform,项目名称:ml-on-gcp,代码行数:5,代码来源:cifar10_main.py

示例8: main

# 需要导入模块: from official.utils.logs import logger [as 别名]
# 或者: from official.utils.logs.logger import benchmark_context [as 别名]
def main(_):
  with logger.benchmark_context(flags.FLAGS):
    run_imagenet(flags.FLAGS) 
开发者ID:GoogleCloudPlatform,项目名称:ml-on-gcp,代码行数:5,代码来源:imagenet_main.py

示例9: main

# 需要导入模块: from official.utils.logs import logger [as 别名]
# 或者: from official.utils.logs.logger import benchmark_context [as 别名]
def main(_):
  with logger.benchmark_context(flags.FLAGS):
    run_transformer(flags.FLAGS) 
开发者ID:PipelineAI,项目名称:models,代码行数:5,代码来源:transformer_main.py

示例10: main

# 需要导入模块: from official.utils.logs import logger [as 别名]
# 或者: from official.utils.logs.logger import benchmark_context [as 别名]
def main(_):
  with logger.benchmark_context(FLAGS), \
      mlperf_helper.LOGGER(FLAGS.output_ml_perf_compliance_logging):
    mlperf_helper.set_ncf_root(os.path.split(os.path.abspath(__file__))[0])
    run_ncf(FLAGS) 
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:7,代码来源:ncf_keras_main.py

示例11: main

# 需要导入模块: from official.utils.logs import logger [as 别名]
# 或者: from official.utils.logs.logger import benchmark_context [as 别名]
def main(_):
  with logger.benchmark_context(flags.FLAGS):
    run_movie(flags.FLAGS) 
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:5,代码来源:movielens_main.py

示例12: main

# 需要导入模块: from official.utils.logs import logger [as 别名]
# 或者: from official.utils.logs.logger import benchmark_context [as 别名]
def main(_):
  model_helpers.apply_clean(flags.FLAGS)
  with logger.benchmark_context(flags.FLAGS):
    return run(flags.FLAGS) 
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:6,代码来源:ctl_imagenet_main.py

示例13: main

# 需要导入模块: from official.utils.logs import logger [as 别名]
# 或者: from official.utils.logs.logger import benchmark_context [as 别名]
def main(_):
  with logger.benchmark_context(flags.FLAGS):
    return run(flags.FLAGS) 
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:5,代码来源:resnet_cifar_main.py

示例14: main

# 需要导入模块: from official.utils.logs import logger [as 别名]
# 或者: from official.utils.logs.logger import benchmark_context [as 别名]
def main(_):
  model_helpers.apply_clean(flags.FLAGS)
  with logger.benchmark_context(flags.FLAGS):
    stats = run(flags.FLAGS)
  logging.info('Run stats:\n%s', stats) 
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:7,代码来源:resnet_imagenet_main.py

示例15: main

# 需要导入模块: from official.utils.logs import logger [as 别名]
# 或者: from official.utils.logs.logger import benchmark_context [as 别名]
def main(_):
  with logger.benchmark_context(flags_obj):
    run_deep_speech(flags_obj) 
开发者ID:generalized-iou,项目名称:g-tensorflow-models,代码行数:5,代码来源:deep_speech.py


注:本文中的official.utils.logs.logger.benchmark_context方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。