本文整理汇总了Python中object_detection.utils.visualization_utils.draw_bounding_boxes_on_image_tensors方法的典型用法代码示例。如果您正苦于以下问题:Python visualization_utils.draw_bounding_boxes_on_image_tensors方法的具体用法?Python visualization_utils.draw_bounding_boxes_on_image_tensors怎么用?Python visualization_utils.draw_bounding_boxes_on_image_tensors使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类object_detection.utils.visualization_utils
的用法示例。
在下文中一共展示了visualization_utils.draw_bounding_boxes_on_image_tensors方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_draw_bounding_boxes_on_image_tensors_with_additional_channels
# 需要导入模块: from object_detection.utils import visualization_utils [as 别名]
# 或者: from object_detection.utils.visualization_utils import draw_bounding_boxes_on_image_tensors [as 别名]
def test_draw_bounding_boxes_on_image_tensors_with_additional_channels(self):
"""Tests the case where input image tensor has more than 3 channels."""
category_index = {1: {'id': 1, 'name': 'dog'}}
image_np = self.create_test_image_with_five_channels()
images_np = np.stack((image_np, image_np), axis=0)
with tf.Graph().as_default():
images_tensor = tf.constant(value=images_np, dtype=tf.uint8)
boxes = tf.constant(0, dtype=tf.float32, shape=[2, 0, 4])
classes = tf.constant(0, dtype=tf.int64, shape=[2, 0])
scores = tf.constant(0, dtype=tf.float32, shape=[2, 0])
images_with_boxes = (
visualization_utils.draw_bounding_boxes_on_image_tensors(
images_tensor,
boxes,
classes,
scores,
category_index,
min_score_thresh=0.2))
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
final_images_np = sess.run(images_with_boxes)
self.assertEqual((2, 100, 200, 3), final_images_np.shape)
示例2: test_draw_bounding_boxes_on_image_tensors_with_additional_channels
# 需要导入模块: from object_detection.utils import visualization_utils [as 别名]
# 或者: from object_detection.utils.visualization_utils import draw_bounding_boxes_on_image_tensors [as 别名]
def test_draw_bounding_boxes_on_image_tensors_with_additional_channels(self):
"""Tests the case where input image tensor has more than 3 channels."""
category_index = {1: {'id': 1, 'name': 'dog'}}
image_np = self.create_test_image_with_five_channels()
images_np = np.stack((image_np, image_np), axis=0)
def graph_fn():
images_tensor = tf.constant(value=images_np, dtype=tf.uint8)
boxes = tf.constant(0, dtype=tf.float32, shape=[2, 0, 4])
classes = tf.constant(0, dtype=tf.int64, shape=[2, 0])
scores = tf.constant(0, dtype=tf.float32, shape=[2, 0])
images_with_boxes = (
visualization_utils.draw_bounding_boxes_on_image_tensors(
images_tensor,
boxes,
classes,
scores,
category_index,
min_score_thresh=0.2))
return images_with_boxes
final_images_np = self.execute(graph_fn, [])
self.assertEqual((2, 100, 200, 3), final_images_np.shape)
示例3: test_draw_bounding_boxes_on_image_tensors
# 需要导入模块: from object_detection.utils import visualization_utils [as 别名]
# 或者: from object_detection.utils.visualization_utils import draw_bounding_boxes_on_image_tensors [as 别名]
def test_draw_bounding_boxes_on_image_tensors(self):
"""Tests that bounding box utility produces reasonable results."""
category_index = {1: {'id': 1, 'name': 'dog'}, 2: {'id': 2, 'name': 'cat'}}
fname = os.path.join(_TESTDATA_PATH, 'image1.jpg')
image_np = np.array(Image.open(fname))
images_np = np.stack((image_np, image_np), axis=0)
with tf.Graph().as_default():
images_tensor = tf.constant(value=images_np, dtype=tf.uint8)
boxes = tf.constant([[[0.4, 0.25, 0.75, 0.75], [0.5, 0.3, 0.6, 0.9]],
[[0.25, 0.25, 0.75, 0.75], [0.1, 0.3, 0.6, 1.0]]])
classes = tf.constant([[1, 1], [1, 2]], dtype=tf.int64)
scores = tf.constant([[0.8, 0.1], [0.6, 0.5]])
images_with_boxes = (
visualization_utils.draw_bounding_boxes_on_image_tensors(
images_tensor,
boxes,
classes,
scores,
category_index,
min_score_thresh=0.2))
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
# Write output images for visualization.
images_with_boxes_np = sess.run(images_with_boxes)
self.assertEqual(images_np.shape, images_with_boxes_np.shape)
for i in range(images_with_boxes_np.shape[0]):
img_name = 'image_' + str(i) + '.png'
output_file = os.path.join(self.get_temp_dir(), img_name)
logging.info('Writing output image %d to %s', i, output_file)
image_pil = Image.fromarray(images_with_boxes_np[i, ...])
image_pil.save(output_file)
示例4: test_draw_bounding_boxes_on_image_tensors
# 需要导入模块: from object_detection.utils import visualization_utils [as 别名]
# 或者: from object_detection.utils.visualization_utils import draw_bounding_boxes_on_image_tensors [as 别名]
def test_draw_bounding_boxes_on_image_tensors(self):
"""Tests that bounding box utility produces reasonable results."""
category_index = {1: {'id': 1, 'name': 'dog'}, 2: {'id': 2, 'name': 'cat'}}
fname = os.path.join(_TESTDATA_PATH, 'image1.jpg')
image_np = np.array(Image.open(fname))
images_np = np.stack((image_np, image_np), axis=0)
with tf.Graph().as_default():
images_tensor = tf.constant(value=images_np, dtype=tf.uint8)
boxes = tf.constant([[[0.4, 0.25, 0.75, 0.75], [0.5, 0.3, 0.6, 0.9]],
[[0.25, 0.25, 0.75, 0.75], [0.1, 0.3, 0.6, 1.0]]])
classes = tf.constant([[1, 1], [1, 2]], dtype=tf.int64)
scores = tf.constant([[0.8, 0.1], [0.6, 0.5]])
images_with_boxes = (
visualization_utils.draw_bounding_boxes_on_image_tensors(
images_tensor,
boxes,
classes,
scores,
category_index,
min_score_thresh=0.2))
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
# Write output images for visualization.
images_with_boxes_np = sess.run(images_with_boxes)
self.assertEqual(images_np.shape, images_with_boxes_np.shape)
for i in range(images_with_boxes_np.shape[0]):
img_name = 'image_' + str(i) + '.png'
output_file = os.path.join(self.get_temp_dir(), img_name)
print 'Writing output image %d to %s' % (i, output_file)
image_pil = Image.fromarray(images_with_boxes_np[i, ...])
image_pil.save(output_file)
示例5: test_draw_bounding_boxes_on_image_tensors_grayscale
# 需要导入模块: from object_detection.utils import visualization_utils [as 别名]
# 或者: from object_detection.utils.visualization_utils import draw_bounding_boxes_on_image_tensors [as 别名]
def test_draw_bounding_boxes_on_image_tensors_grayscale(self):
"""Tests the case where input image tensor has one channel."""
category_index = {1: {'id': 1, 'name': 'dog'}}
image_np = self.create_test_grayscale_image()
images_np = np.stack((image_np, image_np), axis=0)
with tf.Graph().as_default():
images_tensor = tf.constant(value=images_np, dtype=tf.uint8)
image_shape = tf.constant([[100, 200], [100, 200]], dtype=tf.int32)
boxes = tf.constant(0, dtype=tf.float32, shape=[2, 0, 4])
classes = tf.constant(0, dtype=tf.int64, shape=[2, 0])
scores = tf.constant(0, dtype=tf.float32, shape=[2, 0])
images_with_boxes = (
visualization_utils.draw_bounding_boxes_on_image_tensors(
images_tensor,
boxes,
classes,
scores,
category_index,
original_image_spatial_shape=image_shape,
true_image_shape=image_shape,
min_score_thresh=0.2))
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
final_images_np = sess.run(images_with_boxes)
self.assertEqual((2, 100, 200, 3), final_images_np.shape)
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:30,代码来源:visualization_utils_test.py
示例6: test_draw_bounding_boxes_on_image_tensors_grayscale
# 需要导入模块: from object_detection.utils import visualization_utils [as 别名]
# 或者: from object_detection.utils.visualization_utils import draw_bounding_boxes_on_image_tensors [as 别名]
def test_draw_bounding_boxes_on_image_tensors_grayscale(self):
"""Tests the case where input image tensor has one channel."""
category_index = {1: {'id': 1, 'name': 'dog'}}
image_np = self.create_test_grayscale_image()
images_np = np.stack((image_np, image_np), axis=0)
def graph_fn():
images_tensor = tf.constant(value=images_np, dtype=tf.uint8)
image_shape = tf.constant([[100, 200], [100, 200]], dtype=tf.int32)
boxes = tf.constant(0, dtype=tf.float32, shape=[2, 0, 4])
classes = tf.constant(0, dtype=tf.int64, shape=[2, 0])
scores = tf.constant(0, dtype=tf.float32, shape=[2, 0])
images_with_boxes = (
visualization_utils.draw_bounding_boxes_on_image_tensors(
images_tensor,
boxes,
classes,
scores,
category_index,
original_image_spatial_shape=image_shape,
true_image_shape=image_shape,
min_score_thresh=0.2))
return images_with_boxes
final_images_np = self.execute(graph_fn, [])
self.assertEqual((2, 100, 200, 3), final_images_np.shape)
示例7: test_draw_bounding_boxes_on_image_tensors
# 需要导入模块: from object_detection.utils import visualization_utils [as 别名]
# 或者: from object_detection.utils.visualization_utils import draw_bounding_boxes_on_image_tensors [as 别名]
def test_draw_bounding_boxes_on_image_tensors(self):
"""Tests that bounding box utility produces reasonable results."""
category_index = {1: {'id': 1, 'name': 'dog'}, 2: {'id': 2, 'name': 'cat'}}
fname = os.path.join(_TESTDATA_PATH, 'image1.jpg')
image_np = np.array(Image.open(fname))
images_np = np.stack((image_np, image_np), axis=0)
original_image_shape = [[636, 512], [636, 512]]
with tf.Graph().as_default():
images_tensor = tf.constant(value=images_np, dtype=tf.uint8)
image_shape = tf.constant(original_image_shape, dtype=tf.int32)
boxes = tf.constant([[[0.4, 0.25, 0.75, 0.75], [0.5, 0.3, 0.6, 0.9]],
[[0.25, 0.25, 0.75, 0.75], [0.1, 0.3, 0.6, 1.0]]])
classes = tf.constant([[1, 1], [1, 2]], dtype=tf.int64)
scores = tf.constant([[0.8, 0.1], [0.6, 0.5]])
images_with_boxes = (
visualization_utils.draw_bounding_boxes_on_image_tensors(
images_tensor,
boxes,
classes,
scores,
category_index,
original_image_spatial_shape=image_shape,
true_image_shape=image_shape,
min_score_thresh=0.2))
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
# Write output images for visualization.
images_with_boxes_np = sess.run(images_with_boxes)
self.assertEqual(images_np.shape[0], images_with_boxes_np.shape[0])
self.assertEqual(images_np.shape[3], images_with_boxes_np.shape[3])
self.assertEqual(
tuple(original_image_shape[0]), images_with_boxes_np.shape[1:3])
for i in range(images_with_boxes_np.shape[0]):
img_name = 'image_' + str(i) + '.png'
output_file = os.path.join(self.get_temp_dir(), img_name)
logging.info('Writing output image %d to %s', i, output_file)
image_pil = Image.fromarray(images_with_boxes_np[i, ...])
image_pil.save(output_file)
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:44,代码来源:visualization_utils_test.py
示例8: test_draw_bounding_boxes_on_image_tensors_with_track_ids
# 需要导入模块: from object_detection.utils import visualization_utils [as 别名]
# 或者: from object_detection.utils.visualization_utils import draw_bounding_boxes_on_image_tensors [as 别名]
def test_draw_bounding_boxes_on_image_tensors_with_track_ids(self):
"""Tests that bounding box utility produces reasonable results."""
category_index = {1: {'id': 1, 'name': 'dog'}, 2: {'id': 2, 'name': 'cat'}}
fname = os.path.join(_TESTDATA_PATH, 'image1.jpg')
image_np = np.array(Image.open(fname))
images_np = np.stack((image_np, image_np), axis=0)
original_image_shape = [[636, 512], [636, 512]]
with tf.Graph().as_default():
images_tensor = tf.constant(value=images_np, dtype=tf.uint8)
image_shape = tf.constant(original_image_shape, dtype=tf.int32)
boxes = tf.constant([[[0.4, 0.25, 0.75, 0.75],
[0.5, 0.3, 0.7, 0.9],
[0.7, 0.5, 0.8, 0.9]],
[[0.41, 0.25, 0.75, 0.75],
[0.51, 0.3, 0.7, 0.9],
[0.75, 0.5, 0.8, 0.9]]])
classes = tf.constant([[1, 1, 2], [1, 1, 2]], dtype=tf.int64)
scores = tf.constant([[0.8, 0.5, 0.7], [0.6, 0.5, 0.8]])
track_ids = tf.constant([[3, 9, 7], [3, 9, 144]], dtype=tf.int32)
images_with_boxes = (
visualization_utils.draw_bounding_boxes_on_image_tensors(
images_tensor,
boxes,
classes,
scores,
category_index,
original_image_spatial_shape=image_shape,
true_image_shape=image_shape,
track_ids=track_ids,
min_score_thresh=0.2))
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
# Write output images for visualization.
images_with_boxes_np = sess.run(images_with_boxes)
self.assertEqual(images_np.shape[0], images_with_boxes_np.shape[0])
self.assertEqual(images_np.shape[3], images_with_boxes_np.shape[3])
self.assertEqual(
tuple(original_image_shape[0]), images_with_boxes_np.shape[1:3])
for i in range(images_with_boxes_np.shape[0]):
img_name = 'image_with_track_ids_' + str(i) + '.png'
output_file = os.path.join(self.get_temp_dir(), img_name)
logging.info('Writing output image %d to %s', i, output_file)
image_pil = Image.fromarray(images_with_boxes_np[i, ...])
image_pil.save(output_file)
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:50,代码来源:visualization_utils_test.py
示例9: test_draw_bounding_boxes_on_image_tensors
# 需要导入模块: from object_detection.utils import visualization_utils [as 别名]
# 或者: from object_detection.utils.visualization_utils import draw_bounding_boxes_on_image_tensors [as 别名]
def test_draw_bounding_boxes_on_image_tensors(self):
"""Tests that bounding box utility produces reasonable results."""
category_index = {1: {'id': 1, 'name': 'dog'}, 2: {'id': 2, 'name': 'cat'}}
fname = os.path.join(_TESTDATA_PATH, 'image1.jpg')
image_np = np.array(Image.open(fname))
images_np = np.stack((image_np, image_np), axis=0)
original_image_shape = [[636, 512], [636, 512]]
def graph_fn():
images_tensor = tf.constant(value=images_np, dtype=tf.uint8)
image_shape = tf.constant(original_image_shape, dtype=tf.int32)
boxes = tf.constant([[[0.4, 0.25, 0.75, 0.75], [0.5, 0.3, 0.6, 0.9]],
[[0.25, 0.25, 0.75, 0.75], [0.1, 0.3, 0.6, 1.0]]])
classes = tf.constant([[1, 1], [1, 2]], dtype=tf.int64)
scores = tf.constant([[0.8, 0.1], [0.6, 0.5]])
keypoints = tf.random.uniform((2, 2, 4, 2), maxval=1.0, dtype=tf.float32)
keypoint_edges = [(0, 1), (1, 2), (2, 3), (3, 0)]
images_with_boxes = (
visualization_utils.draw_bounding_boxes_on_image_tensors(
images_tensor,
boxes,
classes,
scores,
category_index,
original_image_spatial_shape=image_shape,
true_image_shape=image_shape,
keypoints=keypoints,
min_score_thresh=0.2,
keypoint_edges=keypoint_edges))
return images_with_boxes
# Write output images for visualization.
images_with_boxes_np = self.execute(graph_fn, [])
self.assertEqual(images_np.shape[0], images_with_boxes_np.shape[0])
self.assertEqual(images_np.shape[3], images_with_boxes_np.shape[3])
self.assertEqual(
tuple(original_image_shape[0]), images_with_boxes_np.shape[1:3])
for i in range(images_with_boxes_np.shape[0]):
img_name = 'image_' + str(i) + '.png'
output_file = os.path.join(self.get_temp_dir(), img_name)
logging.info('Writing output image %d to %s', i, output_file)
image_pil = Image.fromarray(images_with_boxes_np[i, ...])
image_pil.save(output_file)