当前位置: 首页>>代码示例>>Python>>正文


Python visualization_utils.draw_bounding_boxes_on_image_tensors方法代码示例

本文整理汇总了Python中object_detection.utils.visualization_utils.draw_bounding_boxes_on_image_tensors方法的典型用法代码示例。如果您正苦于以下问题:Python visualization_utils.draw_bounding_boxes_on_image_tensors方法的具体用法?Python visualization_utils.draw_bounding_boxes_on_image_tensors怎么用?Python visualization_utils.draw_bounding_boxes_on_image_tensors使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.utils.visualization_utils的用法示例。


在下文中一共展示了visualization_utils.draw_bounding_boxes_on_image_tensors方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_draw_bounding_boxes_on_image_tensors_with_additional_channels

# 需要导入模块: from object_detection.utils import visualization_utils [as 别名]
# 或者: from object_detection.utils.visualization_utils import draw_bounding_boxes_on_image_tensors [as 别名]
def test_draw_bounding_boxes_on_image_tensors_with_additional_channels(self):
    """Tests the case where input image tensor has more than 3 channels."""
    category_index = {1: {'id': 1, 'name': 'dog'}}
    image_np = self.create_test_image_with_five_channels()
    images_np = np.stack((image_np, image_np), axis=0)

    with tf.Graph().as_default():
      images_tensor = tf.constant(value=images_np, dtype=tf.uint8)
      boxes = tf.constant(0, dtype=tf.float32, shape=[2, 0, 4])
      classes = tf.constant(0, dtype=tf.int64, shape=[2, 0])
      scores = tf.constant(0, dtype=tf.float32, shape=[2, 0])
      images_with_boxes = (
          visualization_utils.draw_bounding_boxes_on_image_tensors(
              images_tensor,
              boxes,
              classes,
              scores,
              category_index,
              min_score_thresh=0.2))

      with self.test_session() as sess:
        sess.run(tf.global_variables_initializer())

        final_images_np = sess.run(images_with_boxes)
        self.assertEqual((2, 100, 200, 3), final_images_np.shape) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:27,代码来源:visualization_utils_test.py

示例2: test_draw_bounding_boxes_on_image_tensors_with_additional_channels

# 需要导入模块: from object_detection.utils import visualization_utils [as 别名]
# 或者: from object_detection.utils.visualization_utils import draw_bounding_boxes_on_image_tensors [as 别名]
def test_draw_bounding_boxes_on_image_tensors_with_additional_channels(self):
    """Tests the case where input image tensor has more than 3 channels."""
    category_index = {1: {'id': 1, 'name': 'dog'}}
    image_np = self.create_test_image_with_five_channels()
    images_np = np.stack((image_np, image_np), axis=0)

    def graph_fn():
      images_tensor = tf.constant(value=images_np, dtype=tf.uint8)
      boxes = tf.constant(0, dtype=tf.float32, shape=[2, 0, 4])
      classes = tf.constant(0, dtype=tf.int64, shape=[2, 0])
      scores = tf.constant(0, dtype=tf.float32, shape=[2, 0])
      images_with_boxes = (
          visualization_utils.draw_bounding_boxes_on_image_tensors(
              images_tensor,
              boxes,
              classes,
              scores,
              category_index,
              min_score_thresh=0.2))

      return images_with_boxes

    final_images_np = self.execute(graph_fn, [])
    self.assertEqual((2, 100, 200, 3), final_images_np.shape) 
开发者ID:tensorflow,项目名称:models,代码行数:26,代码来源:visualization_utils_test.py

示例3: test_draw_bounding_boxes_on_image_tensors

# 需要导入模块: from object_detection.utils import visualization_utils [as 别名]
# 或者: from object_detection.utils.visualization_utils import draw_bounding_boxes_on_image_tensors [as 别名]
def test_draw_bounding_boxes_on_image_tensors(self):
    """Tests that bounding box utility produces reasonable results."""
    category_index = {1: {'id': 1, 'name': 'dog'}, 2: {'id': 2, 'name': 'cat'}}

    fname = os.path.join(_TESTDATA_PATH, 'image1.jpg')
    image_np = np.array(Image.open(fname))
    images_np = np.stack((image_np, image_np), axis=0)

    with tf.Graph().as_default():
      images_tensor = tf.constant(value=images_np, dtype=tf.uint8)
      boxes = tf.constant([[[0.4, 0.25, 0.75, 0.75], [0.5, 0.3, 0.6, 0.9]],
                           [[0.25, 0.25, 0.75, 0.75], [0.1, 0.3, 0.6, 1.0]]])
      classes = tf.constant([[1, 1], [1, 2]], dtype=tf.int64)
      scores = tf.constant([[0.8, 0.1], [0.6, 0.5]])
      images_with_boxes = (
          visualization_utils.draw_bounding_boxes_on_image_tensors(
              images_tensor,
              boxes,
              classes,
              scores,
              category_index,
              min_score_thresh=0.2))

      with self.test_session() as sess:
        sess.run(tf.global_variables_initializer())

        # Write output images for visualization.
        images_with_boxes_np = sess.run(images_with_boxes)
        self.assertEqual(images_np.shape, images_with_boxes_np.shape)
        for i in range(images_with_boxes_np.shape[0]):
          img_name = 'image_' + str(i) + '.png'
          output_file = os.path.join(self.get_temp_dir(), img_name)
          logging.info('Writing output image %d to %s', i, output_file)
          image_pil = Image.fromarray(images_with_boxes_np[i, ...])
          image_pil.save(output_file) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:37,代码来源:visualization_utils_test.py

示例4: test_draw_bounding_boxes_on_image_tensors

# 需要导入模块: from object_detection.utils import visualization_utils [as 别名]
# 或者: from object_detection.utils.visualization_utils import draw_bounding_boxes_on_image_tensors [as 别名]
def test_draw_bounding_boxes_on_image_tensors(self):
    """Tests that bounding box utility produces reasonable results."""
    category_index = {1: {'id': 1, 'name': 'dog'}, 2: {'id': 2, 'name': 'cat'}}

    fname = os.path.join(_TESTDATA_PATH, 'image1.jpg')
    image_np = np.array(Image.open(fname))
    images_np = np.stack((image_np, image_np), axis=0)

    with tf.Graph().as_default():
      images_tensor = tf.constant(value=images_np, dtype=tf.uint8)
      boxes = tf.constant([[[0.4, 0.25, 0.75, 0.75], [0.5, 0.3, 0.6, 0.9]],
                           [[0.25, 0.25, 0.75, 0.75], [0.1, 0.3, 0.6, 1.0]]])
      classes = tf.constant([[1, 1], [1, 2]], dtype=tf.int64)
      scores = tf.constant([[0.8, 0.1], [0.6, 0.5]])
      images_with_boxes = (
          visualization_utils.draw_bounding_boxes_on_image_tensors(
              images_tensor,
              boxes,
              classes,
              scores,
              category_index,
              min_score_thresh=0.2))

      with self.test_session() as sess:
        sess.run(tf.global_variables_initializer())

        # Write output images for visualization.
        images_with_boxes_np = sess.run(images_with_boxes)
        self.assertEqual(images_np.shape, images_with_boxes_np.shape)
        for i in range(images_with_boxes_np.shape[0]):
          img_name = 'image_' + str(i) + '.png'
          output_file = os.path.join(self.get_temp_dir(), img_name)
          print 'Writing output image %d to %s' % (i, output_file)
          image_pil = Image.fromarray(images_with_boxes_np[i, ...])
          image_pil.save(output_file) 
开发者ID:rky0930,项目名称:yolo_v2,代码行数:37,代码来源:visualization_utils_test.py

示例5: test_draw_bounding_boxes_on_image_tensors_grayscale

# 需要导入模块: from object_detection.utils import visualization_utils [as 别名]
# 或者: from object_detection.utils.visualization_utils import draw_bounding_boxes_on_image_tensors [as 别名]
def test_draw_bounding_boxes_on_image_tensors_grayscale(self):
    """Tests the case where input image tensor has one channel."""
    category_index = {1: {'id': 1, 'name': 'dog'}}
    image_np = self.create_test_grayscale_image()
    images_np = np.stack((image_np, image_np), axis=0)

    with tf.Graph().as_default():
      images_tensor = tf.constant(value=images_np, dtype=tf.uint8)
      image_shape = tf.constant([[100, 200], [100, 200]], dtype=tf.int32)
      boxes = tf.constant(0, dtype=tf.float32, shape=[2, 0, 4])
      classes = tf.constant(0, dtype=tf.int64, shape=[2, 0])
      scores = tf.constant(0, dtype=tf.float32, shape=[2, 0])
      images_with_boxes = (
          visualization_utils.draw_bounding_boxes_on_image_tensors(
              images_tensor,
              boxes,
              classes,
              scores,
              category_index,
              original_image_spatial_shape=image_shape,
              true_image_shape=image_shape,
              min_score_thresh=0.2))

      with self.test_session() as sess:
        sess.run(tf.global_variables_initializer())

        final_images_np = sess.run(images_with_boxes)
        self.assertEqual((2, 100, 200, 3), final_images_np.shape) 
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:30,代码来源:visualization_utils_test.py

示例6: test_draw_bounding_boxes_on_image_tensors_grayscale

# 需要导入模块: from object_detection.utils import visualization_utils [as 别名]
# 或者: from object_detection.utils.visualization_utils import draw_bounding_boxes_on_image_tensors [as 别名]
def test_draw_bounding_boxes_on_image_tensors_grayscale(self):
    """Tests the case where input image tensor has one channel."""
    category_index = {1: {'id': 1, 'name': 'dog'}}
    image_np = self.create_test_grayscale_image()
    images_np = np.stack((image_np, image_np), axis=0)

    def graph_fn():
      images_tensor = tf.constant(value=images_np, dtype=tf.uint8)
      image_shape = tf.constant([[100, 200], [100, 200]], dtype=tf.int32)
      boxes = tf.constant(0, dtype=tf.float32, shape=[2, 0, 4])
      classes = tf.constant(0, dtype=tf.int64, shape=[2, 0])
      scores = tf.constant(0, dtype=tf.float32, shape=[2, 0])
      images_with_boxes = (
          visualization_utils.draw_bounding_boxes_on_image_tensors(
              images_tensor,
              boxes,
              classes,
              scores,
              category_index,
              original_image_spatial_shape=image_shape,
              true_image_shape=image_shape,
              min_score_thresh=0.2))

      return images_with_boxes

    final_images_np = self.execute(graph_fn, [])
    self.assertEqual((2, 100, 200, 3), final_images_np.shape) 
开发者ID:tensorflow,项目名称:models,代码行数:29,代码来源:visualization_utils_test.py

示例7: test_draw_bounding_boxes_on_image_tensors

# 需要导入模块: from object_detection.utils import visualization_utils [as 别名]
# 或者: from object_detection.utils.visualization_utils import draw_bounding_boxes_on_image_tensors [as 别名]
def test_draw_bounding_boxes_on_image_tensors(self):
    """Tests that bounding box utility produces reasonable results."""
    category_index = {1: {'id': 1, 'name': 'dog'}, 2: {'id': 2, 'name': 'cat'}}

    fname = os.path.join(_TESTDATA_PATH, 'image1.jpg')
    image_np = np.array(Image.open(fname))
    images_np = np.stack((image_np, image_np), axis=0)
    original_image_shape = [[636, 512], [636, 512]]

    with tf.Graph().as_default():
      images_tensor = tf.constant(value=images_np, dtype=tf.uint8)
      image_shape = tf.constant(original_image_shape, dtype=tf.int32)
      boxes = tf.constant([[[0.4, 0.25, 0.75, 0.75], [0.5, 0.3, 0.6, 0.9]],
                           [[0.25, 0.25, 0.75, 0.75], [0.1, 0.3, 0.6, 1.0]]])
      classes = tf.constant([[1, 1], [1, 2]], dtype=tf.int64)
      scores = tf.constant([[0.8, 0.1], [0.6, 0.5]])
      images_with_boxes = (
          visualization_utils.draw_bounding_boxes_on_image_tensors(
              images_tensor,
              boxes,
              classes,
              scores,
              category_index,
              original_image_spatial_shape=image_shape,
              true_image_shape=image_shape,
              min_score_thresh=0.2))

      with self.test_session() as sess:
        sess.run(tf.global_variables_initializer())

        # Write output images for visualization.
        images_with_boxes_np = sess.run(images_with_boxes)
        self.assertEqual(images_np.shape[0], images_with_boxes_np.shape[0])
        self.assertEqual(images_np.shape[3], images_with_boxes_np.shape[3])
        self.assertEqual(
            tuple(original_image_shape[0]), images_with_boxes_np.shape[1:3])
        for i in range(images_with_boxes_np.shape[0]):
          img_name = 'image_' + str(i) + '.png'
          output_file = os.path.join(self.get_temp_dir(), img_name)
          logging.info('Writing output image %d to %s', i, output_file)
          image_pil = Image.fromarray(images_with_boxes_np[i, ...])
          image_pil.save(output_file) 
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:44,代码来源:visualization_utils_test.py

示例8: test_draw_bounding_boxes_on_image_tensors_with_track_ids

# 需要导入模块: from object_detection.utils import visualization_utils [as 别名]
# 或者: from object_detection.utils.visualization_utils import draw_bounding_boxes_on_image_tensors [as 别名]
def test_draw_bounding_boxes_on_image_tensors_with_track_ids(self):
    """Tests that bounding box utility produces reasonable results."""
    category_index = {1: {'id': 1, 'name': 'dog'}, 2: {'id': 2, 'name': 'cat'}}

    fname = os.path.join(_TESTDATA_PATH, 'image1.jpg')
    image_np = np.array(Image.open(fname))
    images_np = np.stack((image_np, image_np), axis=0)
    original_image_shape = [[636, 512], [636, 512]]

    with tf.Graph().as_default():
      images_tensor = tf.constant(value=images_np, dtype=tf.uint8)
      image_shape = tf.constant(original_image_shape, dtype=tf.int32)
      boxes = tf.constant([[[0.4, 0.25, 0.75, 0.75],
                            [0.5, 0.3, 0.7, 0.9],
                            [0.7, 0.5, 0.8, 0.9]],
                           [[0.41, 0.25, 0.75, 0.75],
                            [0.51, 0.3, 0.7, 0.9],
                            [0.75, 0.5, 0.8, 0.9]]])
      classes = tf.constant([[1, 1, 2], [1, 1, 2]], dtype=tf.int64)
      scores = tf.constant([[0.8, 0.5, 0.7], [0.6, 0.5, 0.8]])
      track_ids = tf.constant([[3, 9, 7], [3, 9, 144]], dtype=tf.int32)
      images_with_boxes = (
          visualization_utils.draw_bounding_boxes_on_image_tensors(
              images_tensor,
              boxes,
              classes,
              scores,
              category_index,
              original_image_spatial_shape=image_shape,
              true_image_shape=image_shape,
              track_ids=track_ids,
              min_score_thresh=0.2))

      with self.test_session() as sess:
        sess.run(tf.global_variables_initializer())

        # Write output images for visualization.
        images_with_boxes_np = sess.run(images_with_boxes)
        self.assertEqual(images_np.shape[0], images_with_boxes_np.shape[0])
        self.assertEqual(images_np.shape[3], images_with_boxes_np.shape[3])
        self.assertEqual(
            tuple(original_image_shape[0]), images_with_boxes_np.shape[1:3])
        for i in range(images_with_boxes_np.shape[0]):
          img_name = 'image_with_track_ids_' + str(i) + '.png'
          output_file = os.path.join(self.get_temp_dir(), img_name)
          logging.info('Writing output image %d to %s', i, output_file)
          image_pil = Image.fromarray(images_with_boxes_np[i, ...])
          image_pil.save(output_file) 
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:50,代码来源:visualization_utils_test.py

示例9: test_draw_bounding_boxes_on_image_tensors

# 需要导入模块: from object_detection.utils import visualization_utils [as 别名]
# 或者: from object_detection.utils.visualization_utils import draw_bounding_boxes_on_image_tensors [as 别名]
def test_draw_bounding_boxes_on_image_tensors(self):
    """Tests that bounding box utility produces reasonable results."""
    category_index = {1: {'id': 1, 'name': 'dog'}, 2: {'id': 2, 'name': 'cat'}}
    fname = os.path.join(_TESTDATA_PATH, 'image1.jpg')
    image_np = np.array(Image.open(fname))
    images_np = np.stack((image_np, image_np), axis=0)
    original_image_shape = [[636, 512], [636, 512]]

    def graph_fn():
      images_tensor = tf.constant(value=images_np, dtype=tf.uint8)
      image_shape = tf.constant(original_image_shape, dtype=tf.int32)
      boxes = tf.constant([[[0.4, 0.25, 0.75, 0.75], [0.5, 0.3, 0.6, 0.9]],
                           [[0.25, 0.25, 0.75, 0.75], [0.1, 0.3, 0.6, 1.0]]])
      classes = tf.constant([[1, 1], [1, 2]], dtype=tf.int64)
      scores = tf.constant([[0.8, 0.1], [0.6, 0.5]])
      keypoints = tf.random.uniform((2, 2, 4, 2), maxval=1.0, dtype=tf.float32)
      keypoint_edges = [(0, 1), (1, 2), (2, 3), (3, 0)]
      images_with_boxes = (
          visualization_utils.draw_bounding_boxes_on_image_tensors(
              images_tensor,
              boxes,
              classes,
              scores,
              category_index,
              original_image_spatial_shape=image_shape,
              true_image_shape=image_shape,
              keypoints=keypoints,
              min_score_thresh=0.2,
              keypoint_edges=keypoint_edges))
      return images_with_boxes

    # Write output images for visualization.
    images_with_boxes_np = self.execute(graph_fn, [])
    self.assertEqual(images_np.shape[0], images_with_boxes_np.shape[0])
    self.assertEqual(images_np.shape[3], images_with_boxes_np.shape[3])
    self.assertEqual(
        tuple(original_image_shape[0]), images_with_boxes_np.shape[1:3])
    for i in range(images_with_boxes_np.shape[0]):
      img_name = 'image_' + str(i) + '.png'
      output_file = os.path.join(self.get_temp_dir(), img_name)
      logging.info('Writing output image %d to %s', i, output_file)
      image_pil = Image.fromarray(images_with_boxes_np[i, ...])
      image_pil.save(output_file) 
开发者ID:tensorflow,项目名称:models,代码行数:45,代码来源:visualization_utils_test.py


注:本文中的object_detection.utils.visualization_utils.draw_bounding_boxes_on_image_tensors方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。