当前位置: 首页>>代码示例>>Python>>正文


Python per_image_evaluation.PerImageEvaluation方法代码示例

本文整理汇总了Python中object_detection.utils.per_image_evaluation.PerImageEvaluation方法的典型用法代码示例。如果您正苦于以下问题:Python per_image_evaluation.PerImageEvaluation方法的具体用法?Python per_image_evaluation.PerImageEvaluation怎么用?Python per_image_evaluation.PerImageEvaluation使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.utils.per_image_evaluation的用法示例。


在下文中一共展示了per_image_evaluation.PerImageEvaluation方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: setUp

# 需要导入模块: from object_detection.utils import per_image_evaluation [as 别名]
# 或者: from object_detection.utils.per_image_evaluation import PerImageEvaluation [as 别名]
def setUp(self):
    num_groundtruth_classes = 1
    matching_iou_threshold1 = 0.5
    matching_iou_threshold2 = 0.1
    nms_iou_threshold = 1.0
    nms_max_output_boxes = 10000
    self.eval1 = per_image_evaluation.PerImageEvaluation(
        num_groundtruth_classes, matching_iou_threshold1, nms_iou_threshold,
        nms_max_output_boxes)

    self.eval2 = per_image_evaluation.PerImageEvaluation(
        num_groundtruth_classes, matching_iou_threshold2, nms_iou_threshold,
        nms_max_output_boxes)

    self.detected_boxes = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]],
                                   dtype=float)
    self.detected_scores = np.array([0.6, 0.8, 0.5], dtype=float) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:19,代码来源:per_image_evaluation_test.py

示例2: test_compute_corloc_with_normal_iou_threshold

# 需要导入模块: from object_detection.utils import per_image_evaluation [as 别名]
# 或者: from object_detection.utils.per_image_evaluation import PerImageEvaluation [as 别名]
def test_compute_corloc_with_normal_iou_threshold(self):
    num_groundtruth_classes = 3
    matching_iou_threshold = 0.5
    nms_iou_threshold = 1.0
    nms_max_output_boxes = 10000
    eval1 = per_image_evaluation.PerImageEvaluation(num_groundtruth_classes,
                                                    matching_iou_threshold,
                                                    nms_iou_threshold,
                                                    nms_max_output_boxes)
    detected_boxes = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3],
                               [0, 0, 5, 5]], dtype=float)
    detected_scores = np.array([0.9, 0.9, 0.1, 0.9], dtype=float)
    detected_class_labels = np.array([0, 1, 0, 2], dtype=int)
    groundtruth_boxes = np.array([[0, 0, 1, 1], [0, 0, 3, 3], [0, 0, 6, 6]],
                                 dtype=float)
    groundtruth_class_labels = np.array([0, 0, 2], dtype=int)

    is_class_correctly_detected_in_image = eval1._compute_cor_loc(
        detected_boxes, detected_scores, detected_class_labels,
        groundtruth_boxes, groundtruth_class_labels)
    expected_result = np.array([1, 0, 1], dtype=int)
    self.assertTrue(np.array_equal(expected_result,
                                   is_class_correctly_detected_in_image)) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:25,代码来源:per_image_evaluation_test.py

示例3: test_compute_corloc_with_very_large_iou_threshold

# 需要导入模块: from object_detection.utils import per_image_evaluation [as 别名]
# 或者: from object_detection.utils.per_image_evaluation import PerImageEvaluation [as 别名]
def test_compute_corloc_with_very_large_iou_threshold(self):
    num_groundtruth_classes = 3
    matching_iou_threshold = 0.9
    nms_iou_threshold = 1.0
    nms_max_output_boxes = 10000
    eval1 = per_image_evaluation.PerImageEvaluation(num_groundtruth_classes,
                                                    matching_iou_threshold,
                                                    nms_iou_threshold,
                                                    nms_max_output_boxes)
    detected_boxes = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3],
                               [0, 0, 5, 5]], dtype=float)
    detected_scores = np.array([0.9, 0.9, 0.1, 0.9], dtype=float)
    detected_class_labels = np.array([0, 1, 0, 2], dtype=int)
    groundtruth_boxes = np.array([[0, 0, 1, 1], [0, 0, 3, 3], [0, 0, 6, 6]],
                                 dtype=float)
    groundtruth_class_labels = np.array([0, 0, 2], dtype=int)

    is_class_correctly_detected_in_image = eval1._compute_cor_loc(
        detected_boxes, detected_scores, detected_class_labels,
        groundtruth_boxes, groundtruth_class_labels)
    expected_result = np.array([1, 0, 0], dtype=int)
    self.assertTrue(np.array_equal(expected_result,
                                   is_class_correctly_detected_in_image)) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:25,代码来源:per_image_evaluation_test.py

示例4: test_tp_fp

# 需要导入模块: from object_detection.utils import per_image_evaluation [as 别名]
# 或者: from object_detection.utils.per_image_evaluation import PerImageEvaluation [as 别名]
def test_tp_fp(self):
    num_groundtruth_classes = 3
    matching_iou_threshold = 0.5
    nms_iou_threshold = 1.0
    nms_max_output_boxes = 10000
    eval1 = per_image_evaluation.PerImageEvaluation(num_groundtruth_classes,
                                                    matching_iou_threshold,
                                                    nms_iou_threshold,
                                                    nms_max_output_boxes)
    detected_boxes = np.array([[0, 0, 1, 1], [10, 10, 5, 5], [0, 0, 2, 2],
                               [5, 10, 10, 5], [10, 5, 5, 10], [0, 0, 3, 3]],
                              dtype=float)
    detected_scores = np.array([0.8, 0.1, 0.8, 0.9, 0.7, 0.8], dtype=float)
    detected_class_labels = np.array([0, 1, 1, 2, 0, 2], dtype=int)
    groundtruth_boxes = np.array([[0, 0, 1, 1], [0, 0, 3.5, 3.5]], dtype=float)
    groundtruth_class_labels = np.array([0, 2], dtype=int)
    groundtruth_groundtruth_is_difficult_list = np.zeros(2, dtype=float)
    scores, tp_fp_labels, _ = eval1.compute_object_detection_metrics(
        detected_boxes, detected_scores, detected_class_labels,
        groundtruth_boxes, groundtruth_class_labels,
        groundtruth_groundtruth_is_difficult_list)
    expected_scores = [np.array([0.8], dtype=float)] * 3
    expected_tp_fp_labels = [np.array([True]), np.array([False]), np.array([True
                                                                           ])]
    for i in range(len(expected_scores)):
      self.assertTrue(np.allclose(expected_scores[i], scores[i]))
      self.assertTrue(np.array_equal(expected_tp_fp_labels[i], tp_fp_labels[i])) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:29,代码来源:per_image_evaluation_test.py


注:本文中的object_detection.utils.per_image_evaluation.PerImageEvaluation方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。