当前位置: 首页>>代码示例>>Python>>正文


Python ops.retain_groundtruth_with_positive_classes方法代码示例

本文整理汇总了Python中object_detection.utils.ops.retain_groundtruth_with_positive_classes方法的典型用法代码示例。如果您正苦于以下问题:Python ops.retain_groundtruth_with_positive_classes方法的具体用法?Python ops.retain_groundtruth_with_positive_classes怎么用?Python ops.retain_groundtruth_with_positive_classes使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.utils.ops的用法示例。


在下文中一共展示了ops.retain_groundtruth_with_positive_classes方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_filter_groundtruth_with_positive_classes

# 需要导入模块: from object_detection.utils import ops [as 别名]
# 或者: from object_detection.utils.ops import retain_groundtruth_with_positive_classes [as 别名]
def test_filter_groundtruth_with_positive_classes(self):
    input_image = tf.placeholder(tf.float32, shape=(None, None, 3))
    input_boxes = tf.placeholder(tf.float32, shape=(None, 4))
    input_classes = tf.placeholder(tf.int32, shape=(None,))
    input_is_crowd = tf.placeholder(tf.bool, shape=(None,))
    input_area = tf.placeholder(tf.float32, shape=(None,))
    input_difficult = tf.placeholder(tf.float32, shape=(None,))
    input_label_types = tf.placeholder(tf.string, shape=(None,))
    input_confidences = tf.placeholder(tf.float32, shape=(None,))
    valid_indices = tf.placeholder(tf.int32, shape=(None,))
    input_tensors = {
        fields.InputDataFields.image: input_image,
        fields.InputDataFields.groundtruth_boxes: input_boxes,
        fields.InputDataFields.groundtruth_classes: input_classes,
        fields.InputDataFields.groundtruth_is_crowd: input_is_crowd,
        fields.InputDataFields.groundtruth_area: input_area,
        fields.InputDataFields.groundtruth_difficult: input_difficult,
        fields.InputDataFields.groundtruth_label_types: input_label_types,
        fields.InputDataFields.groundtruth_confidences: input_confidences,
    }
    output_tensors = ops.retain_groundtruth_with_positive_classes(input_tensors)

    image_tensor = np.random.rand(224, 224, 3)
    feed_dict = {
        input_image: image_tensor,
        input_boxes:
        np.array([[0.2, 0.4, 0.1, 0.8], [0.2, 0.4, 1.0, 0.8]], dtype=np.float),
        input_classes: np.array([1, 0], dtype=np.int32),
        input_is_crowd: np.array([False, True], dtype=np.bool),
        input_area: np.array([32, 48], dtype=np.float32),
        input_difficult: np.array([True, False], dtype=np.bool),
        input_label_types:
        np.array(['APPROPRIATE', 'INCORRECT'], dtype=np.string_),
        input_confidences: np.array([0.99, 0.5], dtype=np.float32),
        valid_indices: np.array([0], dtype=np.int32),
    }
    expected_tensors = {
        fields.InputDataFields.image: image_tensor,
        fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]],
        fields.InputDataFields.groundtruth_classes: [1],
        fields.InputDataFields.groundtruth_is_crowd: [False],
        fields.InputDataFields.groundtruth_area: [32],
        fields.InputDataFields.groundtruth_difficult: [True],
        fields.InputDataFields.groundtruth_label_types: [six.b('APPROPRIATE')],
        fields.InputDataFields.groundtruth_confidences: [0.99],
    }
    with self.test_session() as sess:
      output_tensors = sess.run(output_tensors, feed_dict=feed_dict)
      for key in [fields.InputDataFields.image,
                  fields.InputDataFields.groundtruth_boxes,
                  fields.InputDataFields.groundtruth_area,
                  fields.InputDataFields.groundtruth_confidences]:
        self.assertAllClose(expected_tensors[key], output_tensors[key])
      for key in [fields.InputDataFields.groundtruth_classes,
                  fields.InputDataFields.groundtruth_is_crowd,
                  fields.InputDataFields.groundtruth_label_types]:
        self.assertAllEqual(expected_tensors[key], output_tensors[key]) 
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:59,代码来源:ops_test.py

示例2: _build_training_batch_dict

# 需要导入模块: from object_detection.utils import ops [as 别名]
# 或者: from object_detection.utils.ops import retain_groundtruth_with_positive_classes [as 别名]
def _build_training_batch_dict(batch_sequences_with_states, unroll_length,
                               batch_size):
  """Builds training batch samples.

  Args:
    batch_sequences_with_states: A batch_sequences_with_states object.
    unroll_length: Unrolled length for LSTM training.
    batch_size: Batch size for queue outputs.

  Returns:
    A dictionary of tensors based on items in input_reader_config.
  """
  seq_tensors_dict = {
      fields.InputDataFields.image: [],
      fields.InputDataFields.groundtruth_boxes: [],
      fields.InputDataFields.groundtruth_classes: [],
      'batch': batch_sequences_with_states,
  }
  for i in range(unroll_length):
    for j in range(batch_size):
      filtered_dict = util_ops.filter_groundtruth_with_nan_box_coordinates({
          fields.InputDataFields.groundtruth_boxes: (
              batch_sequences_with_states.sequences['groundtruth_boxes'][j][i]),
          fields.InputDataFields.groundtruth_classes: (
              batch_sequences_with_states.sequences['groundtruth_classes'][j][i]
          ),
      })
      filtered_dict = util_ops.retain_groundtruth_with_positive_classes(
          filtered_dict)
      seq_tensors_dict[fields.InputDataFields.image].append(
          batch_sequences_with_states.sequences['image'][j][i])
      seq_tensors_dict[fields.InputDataFields.groundtruth_boxes].append(
          filtered_dict[fields.InputDataFields.groundtruth_boxes])
      seq_tensors_dict[fields.InputDataFields.groundtruth_classes].append(
          filtered_dict[fields.InputDataFields.groundtruth_classes])
  seq_tensors_dict[fields.InputDataFields.image] = tuple(
      seq_tensors_dict[fields.InputDataFields.image])
  seq_tensors_dict[fields.InputDataFields.groundtruth_boxes] = tuple(
      seq_tensors_dict[fields.InputDataFields.groundtruth_boxes])
  seq_tensors_dict[fields.InputDataFields.groundtruth_classes] = tuple(
      seq_tensors_dict[fields.InputDataFields.groundtruth_classes])

  return seq_tensors_dict 
开发者ID:generalized-iou,项目名称:g-tensorflow-models,代码行数:45,代码来源:seq_dataset_builder.py

示例3: test_filter_groundtruth_with_positive_classes

# 需要导入模块: from object_detection.utils import ops [as 别名]
# 或者: from object_detection.utils.ops import retain_groundtruth_with_positive_classes [as 别名]
def test_filter_groundtruth_with_positive_classes(self):

    def graph_fn(input_image, input_boxes, input_classes, input_is_crowd,
                 input_area, input_difficult, input_label_types,
                 input_confidences):
      input_tensors = {
          fields.InputDataFields.image: input_image,
          fields.InputDataFields.groundtruth_boxes: input_boxes,
          fields.InputDataFields.groundtruth_classes: input_classes,
          fields.InputDataFields.groundtruth_is_crowd: input_is_crowd,
          fields.InputDataFields.groundtruth_area: input_area,
          fields.InputDataFields.groundtruth_difficult: input_difficult,
          fields.InputDataFields.groundtruth_label_types: input_label_types,
          fields.InputDataFields.groundtruth_confidences: input_confidences,
      }
      output_tensors = ops.retain_groundtruth_with_positive_classes(
          input_tensors)
      return output_tensors

    input_image = np.random.rand(224, 224, 3)
    input_boxes = np.array([[0.2, 0.4, 0.1, 0.8], [0.2, 0.4, 1.0, 0.8]],
                           dtype=np.float)
    input_classes = np.array([1, 0], dtype=np.int32)
    input_is_crowd = np.array([False, True], dtype=np.bool)
    input_area = np.array([32, 48], dtype=np.float32)
    input_difficult = np.array([True, False], dtype=np.bool)
    input_label_types = np.array(['APPROPRIATE', 'INCORRECT'],
                                 dtype=np.string_)
    input_confidences = np.array([0.99, 0.5], dtype=np.float32)

    expected_tensors = {
        fields.InputDataFields.image: input_image,
        fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]],
        fields.InputDataFields.groundtruth_classes: [1],
        fields.InputDataFields.groundtruth_is_crowd: [False],
        fields.InputDataFields.groundtruth_area: [32],
        fields.InputDataFields.groundtruth_difficult: [True],
        fields.InputDataFields.groundtruth_label_types: [six.b('APPROPRIATE')],
        fields.InputDataFields.groundtruth_confidences: [0.99],
    }

    # Executing on CPU because string types are not supported on TPU.
    output_tensors = self.execute_cpu(graph_fn,
                                      [input_image, input_boxes,
                                       input_classes, input_is_crowd,
                                       input_area,
                                       input_difficult, input_label_types,
                                       input_confidences])

    for key in [fields.InputDataFields.image,
                fields.InputDataFields.groundtruth_boxes,
                fields.InputDataFields.groundtruth_area,
                fields.InputDataFields.groundtruth_confidences]:
      self.assertAllClose(expected_tensors[key], output_tensors[key])
    for key in [fields.InputDataFields.groundtruth_classes,
                fields.InputDataFields.groundtruth_is_crowd,
                fields.InputDataFields.groundtruth_label_types]:
      self.assertAllEqual(expected_tensors[key], output_tensors[key]) 
开发者ID:tensorflow,项目名称:models,代码行数:60,代码来源:ops_test.py


注:本文中的object_detection.utils.ops.retain_groundtruth_with_positive_classes方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。