本文整理汇总了Python中object_detection.utils.ops.position_sensitive_crop_regions方法的典型用法代码示例。如果您正苦于以下问题:Python ops.position_sensitive_crop_regions方法的具体用法?Python ops.position_sensitive_crop_regions怎么用?Python ops.position_sensitive_crop_regions使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类object_detection.utils.ops
的用法示例。
在下文中一共展示了ops.position_sensitive_crop_regions方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_position_sensitive
# 需要导入模块: from object_detection.utils import ops [as 别名]
# 或者: from object_detection.utils.ops import position_sensitive_crop_regions [as 别名]
def test_position_sensitive(self):
num_spatial_bins = [3, 2]
image_shape = [1, 3, 2, 6]
# First channel is 1's, second channel is 2's, etc.
image = tf.constant(range(1, 3 * 2 + 1) * 6, dtype=tf.float32,
shape=image_shape)
boxes = tf.random_uniform((2, 4))
box_ind = tf.constant([0, 0], dtype=tf.int32)
# The result for both boxes should be [[1, 2], [3, 4], [5, 6]]
# before averaging.
expected_output = np.array([3.5, 3.5]).reshape([2, 1, 1, 1])
for crop_size_mult in range(1, 3):
crop_size = [3 * crop_size_mult, 2 * crop_size_mult]
ps_crop_and_pool = ops.position_sensitive_crop_regions(
image, boxes, box_ind, crop_size, num_spatial_bins, global_pool=True)
with self.test_session() as sess:
output = sess.run(ps_crop_and_pool)
self.assertAllClose(output, expected_output)
示例2: test_position_sensitive_with_single_bin
# 需要导入模块: from object_detection.utils import ops [as 别名]
# 或者: from object_detection.utils.ops import position_sensitive_crop_regions [as 别名]
def test_position_sensitive_with_single_bin(self):
num_spatial_bins = [1, 1]
image_shape = [2, 3, 3, 4]
crop_size = [2, 2]
image = tf.random_uniform(image_shape)
boxes = tf.random_uniform((6, 4))
box_ind = tf.constant([0, 0, 0, 1, 1, 1], dtype=tf.int32)
# When a single bin is used, position-sensitive crop and pool should be
# the same as non-position sensitive crop and pool.
crop = tf.image.crop_and_resize(image, boxes, box_ind, crop_size)
crop_and_pool = tf.reduce_mean(crop, [1, 2], keep_dims=True)
ps_crop_and_pool = ops.position_sensitive_crop_regions(
image, boxes, box_ind, crop_size, num_spatial_bins, global_pool=True)
with self.test_session() as sess:
expected_output, output = sess.run((crop_and_pool, ps_crop_and_pool))
self.assertAllClose(output, expected_output)
示例3: test_position_sensitive_with_global_pool_false_and_single_bin
# 需要导入模块: from object_detection.utils import ops [as 别名]
# 或者: from object_detection.utils.ops import position_sensitive_crop_regions [as 别名]
def test_position_sensitive_with_global_pool_false_and_single_bin(self):
num_spatial_bins = [1, 1]
image_shape = [2, 3, 3, 4]
crop_size = [1, 1]
image = tf.random_uniform(image_shape)
boxes = tf.random_uniform((6, 4))
box_ind = tf.constant([0, 0, 0, 1, 1, 1], dtype=tf.int32)
# Since single_bin is used and crop_size = [1, 1] (i.e., no crop resize),
# the outputs are the same whatever the global_pool value is.
ps_crop_and_pool = ops.position_sensitive_crop_regions(
image, boxes, box_ind, crop_size, num_spatial_bins, global_pool=True)
ps_crop = ops.position_sensitive_crop_regions(
image, boxes, box_ind, crop_size, num_spatial_bins, global_pool=False)
with self.test_session() as sess:
pooled_output, unpooled_output = sess.run((ps_crop_and_pool, ps_crop))
self.assertAllClose(pooled_output, unpooled_output)
示例4: test_position_sensitive
# 需要导入模块: from object_detection.utils import ops [as 别名]
# 或者: from object_detection.utils.ops import position_sensitive_crop_regions [as 别名]
def test_position_sensitive(self):
num_spatial_bins = [3, 2]
image_shape = [3, 2, 6]
# First channel is 1's, second channel is 2's, etc.
image = tf.constant(range(1, 3 * 2 + 1) * 6, dtype=tf.float32,
shape=image_shape)
boxes = tf.random_uniform((2, 4))
# The result for both boxes should be [[1, 2], [3, 4], [5, 6]]
# before averaging.
expected_output = np.array([3.5, 3.5]).reshape([2, 1, 1, 1])
for crop_size_mult in range(1, 3):
crop_size = [3 * crop_size_mult, 2 * crop_size_mult]
ps_crop_and_pool = ops.position_sensitive_crop_regions(
image, boxes, crop_size, num_spatial_bins, global_pool=True)
with self.test_session() as sess:
output = sess.run(ps_crop_and_pool)
self.assertAllClose(output, expected_output)
示例5: test_position_sensitive_with_equal_channels
# 需要导入模块: from object_detection.utils import ops [as 别名]
# 或者: from object_detection.utils.ops import position_sensitive_crop_regions [as 别名]
def test_position_sensitive_with_equal_channels(self):
num_spatial_bins = [2, 2]
image_shape = [1, 3, 3, 4]
crop_size = [2, 2]
image = tf.constant(range(1, 3 * 3 + 1), dtype=tf.float32,
shape=[1, 3, 3, 1])
tiled_image = tf.tile(image, [1, 1, 1, image_shape[3]])
boxes = tf.random_uniform((3, 4))
box_ind = tf.constant([0, 0, 0], dtype=tf.int32)
# All channels are equal so position-sensitive crop and resize should
# work as the usual crop and resize for just one channel.
crop = tf.image.crop_and_resize(image, boxes, box_ind, crop_size)
crop_and_pool = tf.reduce_mean(crop, [1, 2], keep_dims=True)
ps_crop_and_pool = ops.position_sensitive_crop_regions(
tiled_image,
boxes,
box_ind,
crop_size,
num_spatial_bins,
global_pool=True)
with self.test_session() as sess:
expected_output, output = sess.run((crop_and_pool, ps_crop_and_pool))
self.assertAllClose(output, expected_output)
示例6: test_raise_value_error_on_num_bins_less_than_one
# 需要导入模块: from object_detection.utils import ops [as 别名]
# 或者: from object_detection.utils.ops import position_sensitive_crop_regions [as 别名]
def test_raise_value_error_on_num_bins_less_than_one(self):
num_spatial_bins = [1, -1]
image_shape = [1, 1, 1, 2]
crop_size = [2, 2]
image = tf.constant(1, dtype=tf.float32, shape=image_shape)
boxes = tf.constant([[0, 0, 1, 1]], dtype=tf.float32)
box_ind = tf.constant([0], dtype=tf.int32)
with self.assertRaisesRegexp(ValueError, 'num_spatial_bins should be >= 1'):
ops.position_sensitive_crop_regions(
image, boxes, box_ind, crop_size, num_spatial_bins, global_pool=True)
示例7: test_raise_value_error_on_non_divisible_crop_size
# 需要导入模块: from object_detection.utils import ops [as 别名]
# 或者: from object_detection.utils.ops import position_sensitive_crop_regions [as 别名]
def test_raise_value_error_on_non_divisible_crop_size(self):
num_spatial_bins = [2, 3]
image_shape = [1, 1, 1, 6]
crop_size = [3, 2]
image = tf.constant(1, dtype=tf.float32, shape=image_shape)
boxes = tf.constant([[0, 0, 1, 1]], dtype=tf.float32)
box_ind = tf.constant([0], dtype=tf.int32)
with self.assertRaisesRegexp(
ValueError, 'crop_size should be divisible by num_spatial_bins'):
ops.position_sensitive_crop_regions(
image, boxes, box_ind, crop_size, num_spatial_bins, global_pool=True)
示例8: test_position_sensitive_with_global_pool_false
# 需要导入模块: from object_detection.utils import ops [as 别名]
# 或者: from object_detection.utils.ops import position_sensitive_crop_regions [as 别名]
def test_position_sensitive_with_global_pool_false(self):
num_spatial_bins = [3, 2]
image_shape = [1, 3, 2, 6]
num_boxes = 2
# First channel is 1's, second channel is 2's, etc.
image = tf.constant(range(1, 3 * 2 + 1) * 6, dtype=tf.float32,
shape=image_shape)
boxes = tf.random_uniform((num_boxes, 4))
box_ind = tf.constant([0, 0], dtype=tf.int32)
expected_output = []
# Expected output, when crop_size = [3, 2].
expected_output.append(np.expand_dims(
np.tile(np.array([[1, 2],
[3, 4],
[5, 6]]), (num_boxes, 1, 1)),
axis=-1))
# Expected output, when crop_size = [6, 4].
expected_output.append(np.expand_dims(
np.tile(np.array([[1, 1, 2, 2],
[1, 1, 2, 2],
[3, 3, 4, 4],
[3, 3, 4, 4],
[5, 5, 6, 6],
[5, 5, 6, 6]]), (num_boxes, 1, 1)),
axis=-1))
for crop_size_mult in range(1, 3):
crop_size = [3 * crop_size_mult, 2 * crop_size_mult]
ps_crop = ops.position_sensitive_crop_regions(
image, boxes, box_ind, crop_size, num_spatial_bins, global_pool=False)
with self.test_session() as sess:
output = sess.run(ps_crop)
self.assertAllEqual(output, expected_output[crop_size_mult - 1])
示例9: test_position_sensitive_with_global_pool_false_and_known_boxes
# 需要导入模块: from object_detection.utils import ops [as 别名]
# 或者: from object_detection.utils.ops import position_sensitive_crop_regions [as 别名]
def test_position_sensitive_with_global_pool_false_and_known_boxes(self):
num_spatial_bins = [2, 2]
image_shape = [2, 2, 2, 4]
crop_size = [2, 2]
image = tf.constant(range(1, 2 * 2 * 4 + 1) * 2, dtype=tf.float32,
shape=image_shape)
# First box contains whole image, and second box contains only first row.
boxes = tf.constant(np.array([[0., 0., 1., 1.],
[0., 0., 0.5, 1.]]), dtype=tf.float32)
box_ind = tf.constant([0, 1], dtype=tf.int32)
expected_output = []
# Expected output, when the box containing whole image.
expected_output.append(
np.reshape(np.array([[4, 7],
[10, 13]]),
(1, 2, 2, 1))
)
# Expected output, when the box containing only first row.
expected_output.append(
np.reshape(np.array([[3, 6],
[7, 10]]),
(1, 2, 2, 1))
)
expected_output = np.concatenate(expected_output, axis=0)
ps_crop = ops.position_sensitive_crop_regions(
image, boxes, box_ind, crop_size, num_spatial_bins, global_pool=False)
with self.test_session() as sess:
output = sess.run(ps_crop)
self.assertAllEqual(output, expected_output)
示例10: test_raise_value_error_on_non_square_block_size
# 需要导入模块: from object_detection.utils import ops [as 别名]
# 或者: from object_detection.utils.ops import position_sensitive_crop_regions [as 别名]
def test_raise_value_error_on_non_square_block_size(self):
num_spatial_bins = [3, 2]
image_shape = [1, 3, 2, 6]
crop_size = [6, 2]
image = tf.constant(1, dtype=tf.float32, shape=image_shape)
boxes = tf.constant([[0, 0, 1, 1]], dtype=tf.float32)
box_ind = tf.constant([0], dtype=tf.int32)
with self.assertRaisesRegexp(
ValueError, 'Only support square bin crop size for now.'):
ops.position_sensitive_crop_regions(
image, boxes, box_ind, crop_size, num_spatial_bins, global_pool=False)