当前位置: 首页>>代码示例>>Python>>正文


Python object_detection_evaluation.ObjectDetectionEvaluation方法代码示例

本文整理汇总了Python中object_detection.utils.object_detection_evaluation.ObjectDetectionEvaluation方法的典型用法代码示例。如果您正苦于以下问题:Python object_detection_evaluation.ObjectDetectionEvaluation方法的具体用法?Python object_detection_evaluation.ObjectDetectionEvaluation怎么用?Python object_detection_evaluation.ObjectDetectionEvaluation使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.utils.object_detection_evaluation的用法示例。


在下文中一共展示了object_detection_evaluation.ObjectDetectionEvaluation方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: setUp

# 需要导入模块: from object_detection.utils import object_detection_evaluation [as 别名]
# 或者: from object_detection.utils.object_detection_evaluation import ObjectDetectionEvaluation [as 别名]
def setUp(self):
    num_groundtruth_classes = 3
    self.od_eval = object_detection_evaluation.ObjectDetectionEvaluation(
        num_groundtruth_classes)

    image_key1 = "img1"
    groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]],
                                  dtype=float)
    groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int)
    self.od_eval.add_single_ground_truth_image_info(
        image_key1, groundtruth_boxes1, groundtruth_class_labels1)
    image_key2 = "img2"
    groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510],
                                   [10, 10, 12, 12]], dtype=float)
    groundtruth_class_labels2 = np.array([0, 0, 2], dtype=int)
    groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool)
    self.od_eval.add_single_ground_truth_image_info(
        image_key2, groundtruth_boxes2, groundtruth_class_labels2,
        groundtruth_is_difficult_list2)
    image_key3 = "img3"
    groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float)
    groundtruth_class_labels3 = np.array([1], dtype=int)
    self.od_eval.add_single_ground_truth_image_info(
        image_key3, groundtruth_boxes3, groundtruth_class_labels3)

    image_key = "img2"
    detected_boxes = np.array(
        [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]],
        dtype=float)
    detected_class_labels = np.array([0, 0, 2], dtype=int)
    detected_scores = np.array([0.7, 0.8, 0.9], dtype=float)
    self.od_eval.add_single_detected_image_info(
        image_key, detected_boxes, detected_scores, detected_class_labels) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:35,代码来源:object_detection_evaluation_test.py

示例2: setUp

# 需要导入模块: from object_detection.utils import object_detection_evaluation [as 别名]
# 或者: from object_detection.utils.object_detection_evaluation import ObjectDetectionEvaluation [as 别名]
def setUp(self):
    num_groundtruth_classes = 3
    self.od_eval = object_detection_evaluation.ObjectDetectionEvaluation(
        num_groundtruth_classes)

    image_key1 = 'img1'
    groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]],
                                  dtype=float)
    groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int)
    self.od_eval.add_single_ground_truth_image_info(
        image_key1, groundtruth_boxes1, groundtruth_class_labels1)
    image_key2 = 'img2'
    groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510],
                                   [10, 10, 12, 12]], dtype=float)
    groundtruth_class_labels2 = np.array([0, 0, 2], dtype=int)
    groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool)
    groundtruth_is_group_of_list2 = np.array([False, False, True], dtype=bool)
    self.od_eval.add_single_ground_truth_image_info(
        image_key2, groundtruth_boxes2, groundtruth_class_labels2,
        groundtruth_is_difficult_list2, groundtruth_is_group_of_list2)

    image_key3 = 'img3'
    groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float)
    groundtruth_class_labels3 = np.array([1], dtype=int)
    self.od_eval.add_single_ground_truth_image_info(
        image_key3, groundtruth_boxes3, groundtruth_class_labels3)

    image_key = 'img2'
    detected_boxes = np.array(
        [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]],
        dtype=float)
    detected_class_labels = np.array([0, 0, 2], dtype=int)
    detected_scores = np.array([0.7, 0.8, 0.9], dtype=float)
    self.od_eval.add_single_detected_image_info(
        image_key, detected_boxes, detected_scores, detected_class_labels) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:37,代码来源:object_detection_evaluation_test.py

示例3: test_value_error_on_zero_classes

# 需要导入模块: from object_detection.utils import object_detection_evaluation [as 别名]
# 或者: from object_detection.utils.object_detection_evaluation import ObjectDetectionEvaluation [as 别名]
def test_value_error_on_zero_classes(self):
    with self.assertRaises(ValueError):
      object_detection_evaluation.ObjectDetectionEvaluation(
          num_groundtruth_classes=0) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:6,代码来源:object_detection_evaluation_test.py


注:本文中的object_detection.utils.object_detection_evaluation.ObjectDetectionEvaluation方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。