当前位置: 首页>>代码示例>>Python>>正文


Python np_mask_ops.iou方法代码示例

本文整理汇总了Python中object_detection.utils.np_mask_ops.iou方法的典型用法代码示例。如果您正苦于以下问题:Python np_mask_ops.iou方法的具体用法?Python np_mask_ops.iou怎么用?Python np_mask_ops.iou使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.utils.np_mask_ops的用法示例。


在下文中一共展示了np_mask_ops.iou方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testIOU

# 需要导入模块: from object_detection.utils import np_mask_ops [as 别名]
# 或者: from object_detection.utils.np_mask_ops import iou [as 别名]
def testIOU(self):
    iou = np_mask_ops.iou(self.masks1, self.masks2)
    expected_iou = np.array(
        [[1.0, 0.0, 8.0/25.0], [0.0, 9.0 / 16.0, 7.0 / 28.0]], dtype=np.float32)
    self.assertAllClose(iou, expected_iou) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:7,代码来源:np_mask_ops_test.py

示例2: iou

# 需要导入模块: from object_detection.utils import np_mask_ops [as 别名]
# 或者: from object_detection.utils.np_mask_ops import iou [as 别名]
def iou(box_mask_list1, box_mask_list2):
  """Computes pairwise intersection-over-union between box and mask collections.

  Args:
    box_mask_list1: BoxMaskList holding N boxes and masks
    box_mask_list2: BoxMaskList holding M boxes and masks

  Returns:
    a numpy array with shape [N, M] representing pairwise iou scores.
  """
  return np_mask_ops.iou(box_mask_list1.get_masks(),
                         box_mask_list2.get_masks()) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:14,代码来源:np_box_mask_list_ops.py

示例3: evaluate

# 需要导入模块: from object_detection.utils import np_mask_ops [as 别名]
# 或者: from object_detection.utils.np_mask_ops import iou [as 别名]
def evaluate(self):
    """Evaluates the detection masks and returns a dictionary of coco metrics.

    Returns:
      A dictionary holding -

      1. summary_metric:
      'PanopticQuality@%.2fIOU': mean panoptic quality averaged over classes at
        the required IOU.
      'SegmentationQuality@%.2fIOU': mean segmentation quality averaged over
        classes at the required IOU.
      'RecognitionQuality@%.2fIOU': mean recognition quality averaged over
        classes at the required IOU.
      'NumValidClasses': number of valid classes. A valid class should have at
        least one normal (is_crowd=0) groundtruth mask or one predicted mask.
      'NumTotalClasses': number of total classes.

      2. per_category_pq: if include_metrics_per_category is True, category
      specific results with keys of the form:
      'PanopticQuality@%.2fIOU_ByCategory/category'.
    """
    # Evaluate and accumulate the iou/tp/fp/fn.
    sum_tp_iou, sum_num_tp, sum_num_fp, sum_num_fn = self._evaluate_all_masks()
    # Compute PQ metric for each category and average over all classes.
    mask_metrics = self._compute_panoptic_metrics(sum_tp_iou, sum_num_tp,
                                                  sum_num_fp, sum_num_fn)
    return mask_metrics 
开发者ID:tensorflow,项目名称:models,代码行数:29,代码来源:coco_evaluation.py


注:本文中的object_detection.utils.np_mask_ops.iou方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。