当前位置: 首页>>代码示例>>Python>>正文


Python np_box_mask_list_ops.non_max_suppression方法代码示例

本文整理汇总了Python中object_detection.utils.np_box_mask_list_ops.non_max_suppression方法的典型用法代码示例。如果您正苦于以下问题:Python np_box_mask_list_ops.non_max_suppression方法的具体用法?Python np_box_mask_list_ops.non_max_suppression怎么用?Python np_box_mask_list_ops.non_max_suppression使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.utils.np_box_mask_list_ops的用法示例。


在下文中一共展示了np_box_mask_list_ops.non_max_suppression方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_with_no_scores_field

# 需要导入模块: from object_detection.utils import np_box_mask_list_ops [as 别名]
# 或者: from object_detection.utils.np_box_mask_list_ops import non_max_suppression [as 别名]
def test_with_no_scores_field(self):
    box_mask_list = np_box_mask_list.BoxMaskList(
        box_data=self.boxes1, mask_data=self.masks1)
    max_output_size = 3
    iou_threshold = 0.5

    with self.assertRaises(ValueError):
      np_box_mask_list_ops.non_max_suppression(
          box_mask_list, max_output_size, iou_threshold) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:11,代码来源:np_box_mask_list_ops_test.py

示例2: test_nms_disabled_max_output_size_equals_one

# 需要导入模块: from object_detection.utils import np_box_mask_list_ops [as 别名]
# 或者: from object_detection.utils.np_box_mask_list_ops import non_max_suppression [as 别名]
def test_nms_disabled_max_output_size_equals_one(self):
    box_mask_list = np_box_mask_list.BoxMaskList(
        box_data=self.boxes2, mask_data=self.masks2)
    box_mask_list.add_field('scores',
                            np.array([.9, .75, .6], dtype=float))
    max_output_size = 1
    iou_threshold = 1.  # No NMS
    expected_boxes = np.array([[3.0, 4.0, 6.0, 8.0]], dtype=float)
    expected_masks = np.array(
        [[[0, 1, 0], [1, 1, 1], [0, 0, 0]]], dtype=np.uint8)
    nms_box_mask_list = np_box_mask_list_ops.non_max_suppression(
        box_mask_list, max_output_size, iou_threshold)
    self.assertAllClose(nms_box_mask_list.get(), expected_boxes)
    self.assertAllClose(nms_box_mask_list.get_masks(), expected_masks) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:16,代码来源:np_box_mask_list_ops_test.py

示例3: _get_overlaps_and_scores_box_mode

# 需要导入模块: from object_detection.utils import np_box_mask_list_ops [as 别名]
# 或者: from object_detection.utils.np_box_mask_list_ops import non_max_suppression [as 别名]
def _get_overlaps_and_scores_box_mode(
      self,
      detected_boxes,
      detected_scores,
      groundtruth_boxes,
      groundtruth_is_group_of_list):
    """Computes overlaps and scores between detected and groudntruth boxes.

    Args:
      detected_boxes: A numpy array of shape [N, 4] representing detected box
          coordinates
      detected_scores: A 1-d numpy array of length N representing classification
          score
      groundtruth_boxes: A numpy array of shape [M, 4] representing ground truth
          box coordinates
      groundtruth_is_group_of_list: A boolean numpy array of length M denoting
          whether a ground truth box has group-of tag. If a groundtruth box
          is group-of box, every detection matching this box is ignored.

    Returns:
      iou: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
          gt_non_group_of_boxlist.num_boxes() == 0 it will be None.
      ioa: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
          gt_group_of_boxlist.num_boxes() == 0 it will be None.
      scores: The score of the detected boxlist.
      num_boxes: Number of non-maximum suppressed detected boxes.
    """
    detected_boxlist = np_box_list.BoxList(detected_boxes)
    detected_boxlist.add_field('scores', detected_scores)
    detected_boxlist = np_box_list_ops.non_max_suppression(
        detected_boxlist, self.nms_max_output_boxes, self.nms_iou_threshold)
    gt_non_group_of_boxlist = np_box_list.BoxList(
        groundtruth_boxes[~groundtruth_is_group_of_list])
    gt_group_of_boxlist = np_box_list.BoxList(
        groundtruth_boxes[groundtruth_is_group_of_list])
    iou = np_box_list_ops.iou(detected_boxlist, gt_non_group_of_boxlist)
    ioa = np.transpose(
        np_box_list_ops.ioa(gt_group_of_boxlist, detected_boxlist))
    scores = detected_boxlist.get_field('scores')
    num_boxes = detected_boxlist.num_boxes()
    return iou, ioa, scores, num_boxes 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:43,代码来源:per_image_evaluation.py

示例4: _get_overlaps_and_scores_box_mode

# 需要导入模块: from object_detection.utils import np_box_mask_list_ops [as 别名]
# 或者: from object_detection.utils.np_box_mask_list_ops import non_max_suppression [as 别名]
def _get_overlaps_and_scores_box_mode(
      self,
      detected_boxes,
      detected_scores,
      groundtruth_boxes,
      groundtruth_is_group_of_list):
    """Computes overlaps and scores between detected and groudntruth boxes.

    Args:
      detected_boxes: A numpy array of shape [N, 4] representing detected box
          coordinates
      detected_scores: A 1-d numpy array of length N representing classification
          score
      groundtruth_boxes: A numpy array of shape [M, 4] representing ground truth
          box coordinates
      groundtruth_is_group_of_list: A boolean numpy array of length M denoting
          whether a ground truth box has group-of tag. If a groundtruth box
          is group-of box, every detection matching this box is ignored.

    Returns:
      iou: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
          gt_non_group_of_boxlist.num_boxes() == 0 it will be None.
      ioa: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
          gt_group_of_boxlist.num_boxes() == 0 it will be None.
      scores: The score of the detected boxlist.
      num_boxes: Number of non-maximum suppressed detected boxes.
    """
    detected_boxlist = np_box_list.BoxList(detected_boxes)
    detected_boxlist.add_field('scores', detected_scores)
    detected_boxlist = np_box_list_ops.non_max_suppression(
        detected_boxlist, self.nms_max_output_boxes, self.nms_iou_threshold)
    gt_non_group_of_boxlist = np_box_list.BoxList(
        groundtruth_boxes[~groundtruth_is_group_of_list])
    gt_group_of_boxlist = np_box_list.BoxList(
        groundtruth_boxes[groundtruth_is_group_of_list])
    iou = np_box_list_ops.iou(detected_boxlist, gt_non_group_of_boxlist)
    ioa = np_box_list_ops.ioa(gt_group_of_boxlist, detected_boxlist)
    scores = detected_boxlist.get_field('scores')
    num_boxes = detected_boxlist.num_boxes()
    return iou, ioa, scores, num_boxes 
开发者ID:cagbal,项目名称:ros_people_object_detection_tensorflow,代码行数:42,代码来源:per_image_evaluation.py

示例5: _get_overlaps_and_scores_box_mode

# 需要导入模块: from object_detection.utils import np_box_mask_list_ops [as 别名]
# 或者: from object_detection.utils.np_box_mask_list_ops import non_max_suppression [as 别名]
def _get_overlaps_and_scores_box_mode(self, detected_boxes, detected_scores,
                                        groundtruth_boxes,
                                        groundtruth_is_group_of_list):
    """Computes overlaps and scores between detected and groudntruth boxes.

    Args:
      detected_boxes: A numpy array of shape [N, 4] representing detected box
        coordinates
      detected_scores: A 1-d numpy array of length N representing classification
        score
      groundtruth_boxes: A numpy array of shape [M, 4] representing ground truth
        box coordinates
      groundtruth_is_group_of_list: A boolean numpy array of length M denoting
        whether a ground truth box has group-of tag. If a groundtruth box is
        group-of box, every detection matching this box is ignored.

    Returns:
      iou: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
          gt_non_group_of_boxlist.num_boxes() == 0 it will be None.
      ioa: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
          gt_group_of_boxlist.num_boxes() == 0 it will be None.
      scores: The score of the detected boxlist.
      num_boxes: Number of non-maximum suppressed detected boxes.
    """
    detected_boxlist = np_box_list.BoxList(detected_boxes)
    detected_boxlist.add_field('scores', detected_scores)
    detected_boxlist = np_box_list_ops.non_max_suppression(
        detected_boxlist, self.nms_max_output_boxes, self.nms_iou_threshold)
    gt_non_group_of_boxlist = np_box_list.BoxList(
        groundtruth_boxes[~groundtruth_is_group_of_list])
    gt_group_of_boxlist = np_box_list.BoxList(
        groundtruth_boxes[groundtruth_is_group_of_list])
    iou = np_box_list_ops.iou(detected_boxlist, gt_non_group_of_boxlist)
    ioa = np.transpose(
        np_box_list_ops.ioa(gt_group_of_boxlist, detected_boxlist))
    scores = detected_boxlist.get_field('scores')
    num_boxes = detected_boxlist.num_boxes()
    return iou, ioa, scores, num_boxes 
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:40,代码来源:per_image_evaluation.py


注:本文中的object_detection.utils.np_box_mask_list_ops.non_max_suppression方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。