本文整理汇总了Python中object_detection.utils.np_box_list_ops.iou方法的典型用法代码示例。如果您正苦于以下问题:Python np_box_list_ops.iou方法的具体用法?Python np_box_list_ops.iou怎么用?Python np_box_list_ops.iou使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类object_detection.utils.np_box_list_ops
的用法示例。
在下文中一共展示了np_box_list_ops.iou方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _compute_is_aclass_correctly_detected_in_image
# 需要导入模块: from object_detection.utils import np_box_list_ops [as 别名]
# 或者: from object_detection.utils.np_box_list_ops import iou [as 别名]
def _compute_is_aclass_correctly_detected_in_image(
self, detected_boxes, detected_scores, groundtruth_boxes):
"""Compute CorLoc score for a single class.
Args:
detected_boxes: A numpy array of shape [N, 4] representing detected box
coordinates
detected_scores: A 1-d numpy array of length N representing classification
score
groundtruth_boxes: A numpy array of shape [M, 4] representing ground truth
box coordinates
Returns:
is_class_correctly_detected_in_image: An integer 1 or 0 denoting whether a
class is correctly detected in the image or not
"""
if detected_boxes.size > 0:
if groundtruth_boxes.size > 0:
max_score_id = np.argmax(detected_scores)
detected_boxlist = np_box_list.BoxList(
np.expand_dims(detected_boxes[max_score_id, :], axis=0))
gt_boxlist = np_box_list.BoxList(groundtruth_boxes)
iou = np_box_list_ops.iou(detected_boxlist, gt_boxlist)
if np.max(iou) >= self.matching_iou_threshold:
return 1
return 0
示例2: test_iou
# 需要导入模块: from object_detection.utils import np_box_list_ops [as 别名]
# 或者: from object_detection.utils.np_box_list_ops import iou [as 别名]
def test_iou(self):
iou = np_box_list_ops.iou(self.boxlist1, self.boxlist2)
expected_iou = np.array([[2.0 / 16.0, 0.0, 6.0 / 400.0],
[1.0 / 16.0, 0.0, 5.0 / 400.0]],
dtype=float)
self.assertAllClose(iou, expected_iou)
示例3: _get_overlaps_and_scores_relation_tuples
# 需要导入模块: from object_detection.utils import np_box_list_ops [as 别名]
# 或者: from object_detection.utils.np_box_list_ops import iou [as 别名]
def _get_overlaps_and_scores_relation_tuples(self, detected_box_tuples,
groundtruth_box_tuples):
"""Computes overlaps and scores between detected and groundtruth tuples.
Both detections and groundtruth boxes have the same class tuples.
Args:
detected_box_tuples: A numpy array of structures with shape [N,],
representing N tuples, each tuple containing the same number of named
bounding boxes.
Each box is of the format [y_min, x_min, y_max, x_max]
groundtruth_box_tuples: A float numpy array of structures with the shape
[M,], representing M tuples, each tuple containing the same number
of named bounding boxes.
Each box is of the format [y_min, x_min, y_max, x_max]
Returns:
result_iou: A float numpy array of size
[num_detected_tuples, num_gt_box_tuples].
"""
result_iou = np.ones(
(detected_box_tuples.shape[0], groundtruth_box_tuples.shape[0]),
dtype=float)
for field in detected_box_tuples.dtype.fields:
detected_boxlist_field = np_box_list.BoxList(detected_box_tuples[field])
gt_boxlist_field = np_box_list.BoxList(groundtruth_box_tuples[field])
iou_field = np_box_list_ops.iou(detected_boxlist_field, gt_boxlist_field)
result_iou = np.minimum(iou_field, result_iou)
return result_iou
示例4: _get_overlaps_and_scores_box_mode
# 需要导入模块: from object_detection.utils import np_box_list_ops [as 别名]
# 或者: from object_detection.utils.np_box_list_ops import iou [as 别名]
def _get_overlaps_and_scores_box_mode(
self,
detected_boxes,
detected_scores,
groundtruth_boxes,
groundtruth_is_group_of_list):
"""Computes overlaps and scores between detected and groudntruth boxes.
Args:
detected_boxes: A numpy array of shape [N, 4] representing detected box
coordinates
detected_scores: A 1-d numpy array of length N representing classification
score
groundtruth_boxes: A numpy array of shape [M, 4] representing ground truth
box coordinates
groundtruth_is_group_of_list: A boolean numpy array of length M denoting
whether a ground truth box has group-of tag. If a groundtruth box
is group-of box, every detection matching this box is ignored.
Returns:
iou: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
gt_non_group_of_boxlist.num_boxes() == 0 it will be None.
ioa: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
gt_group_of_boxlist.num_boxes() == 0 it will be None.
scores: The score of the detected boxlist.
num_boxes: Number of non-maximum suppressed detected boxes.
"""
detected_boxlist = np_box_list.BoxList(detected_boxes)
detected_boxlist.add_field('scores', detected_scores)
detected_boxlist = np_box_list_ops.non_max_suppression(
detected_boxlist, self.nms_max_output_boxes, self.nms_iou_threshold)
gt_non_group_of_boxlist = np_box_list.BoxList(
groundtruth_boxes[~groundtruth_is_group_of_list])
gt_group_of_boxlist = np_box_list.BoxList(
groundtruth_boxes[groundtruth_is_group_of_list])
iou = np_box_list_ops.iou(detected_boxlist, gt_non_group_of_boxlist)
ioa = np.transpose(
np_box_list_ops.ioa(gt_group_of_boxlist, detected_boxlist))
scores = detected_boxlist.get_field('scores')
num_boxes = detected_boxlist.num_boxes()
return iou, ioa, scores, num_boxes
示例5: _get_overlaps_and_scores_box_mode
# 需要导入模块: from object_detection.utils import np_box_list_ops [as 别名]
# 或者: from object_detection.utils.np_box_list_ops import iou [as 别名]
def _get_overlaps_and_scores_box_mode(
self,
detected_boxes,
detected_scores,
groundtruth_boxes,
groundtruth_is_group_of_list):
"""Computes overlaps and scores between detected and groudntruth boxes.
Args:
detected_boxes: A numpy array of shape [N, 4] representing detected box
coordinates
detected_scores: A 1-d numpy array of length N representing classification
score
groundtruth_boxes: A numpy array of shape [M, 4] representing ground truth
box coordinates
groundtruth_is_group_of_list: A boolean numpy array of length M denoting
whether a ground truth box has group-of tag. If a groundtruth box
is group-of box, every detection matching this box is ignored.
Returns:
iou: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
gt_non_group_of_boxlist.num_boxes() == 0 it will be None.
ioa: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
gt_group_of_boxlist.num_boxes() == 0 it will be None.
scores: The score of the detected boxlist.
num_boxes: Number of non-maximum suppressed detected boxes.
"""
detected_boxlist = np_box_list.BoxList(detected_boxes)
detected_boxlist.add_field('scores', detected_scores)
detected_boxlist = np_box_list_ops.non_max_suppression(
detected_boxlist, self.nms_max_output_boxes, self.nms_iou_threshold)
gt_non_group_of_boxlist = np_box_list.BoxList(
groundtruth_boxes[~groundtruth_is_group_of_list])
gt_group_of_boxlist = np_box_list.BoxList(
groundtruth_boxes[groundtruth_is_group_of_list])
iou = np_box_list_ops.iou(detected_boxlist, gt_non_group_of_boxlist)
ioa = np_box_list_ops.ioa(gt_group_of_boxlist, detected_boxlist)
scores = detected_boxlist.get_field('scores')
num_boxes = detected_boxlist.num_boxes()
return iou, ioa, scores, num_boxes
示例6: _get_overlaps_and_scores_relation_tuples
# 需要导入模块: from object_detection.utils import np_box_list_ops [as 别名]
# 或者: from object_detection.utils.np_box_list_ops import iou [as 别名]
def _get_overlaps_and_scores_relation_tuples(
self, detected_box_tuples, detected_scores, groundtruth_box_tuples):
"""Computes overlaps and scores between detected and groundtruth tuples.
Both detections and groundtruth boxes have the same class tuples.
Args:
detected_box_tuples: A numpy array of structures with shape [N,],
representing N tuples, each tuple containing the same number of named
bounding boxes.
Each box is of the format [y_min, x_min, y_max, x_max]
detected_scores: A float numpy array of shape [N,], representing
the confidence scores of the detected N object instances.
groundtruth_box_tuples: A float numpy array of structures with the shape
[M,], representing M tuples, each tuple containing the same number
of named bounding boxes.
Each box is of the format [y_min, x_min, y_max, x_max]
Returns:
result_iou: A float numpy array of size
[num_detected_tuples, num_gt_box_tuples].
scores: The score of the detected boxlist.
"""
result_iou = np.ones(
(detected_box_tuples.shape[0], groundtruth_box_tuples.shape[0]),
dtype=float)
for field in detected_box_tuples.dtype.fields:
detected_boxlist_field = np_box_list.BoxList(detected_box_tuples[field])
detected_boxlist_field.add_field('scores', detected_scores)
detected_boxlist_field = np_box_list_ops.sort_by_field(
detected_boxlist_field, 'scores')
gt_boxlist_field = np_box_list.BoxList(groundtruth_box_tuples[field])
iou_field = np_box_list_ops.iou(detected_boxlist_field, gt_boxlist_field)
result_iou = np.minimum(iou_field, result_iou)
scores = detected_boxlist_field.get_field('scores')
return result_iou, scores