当前位置: 首页>>代码示例>>Python>>正文


Python np_box_list_ops.gather方法代码示例

本文整理汇总了Python中object_detection.utils.np_box_list_ops.gather方法的典型用法代码示例。如果您正苦于以下问题:Python np_box_list_ops.gather方法的具体用法?Python np_box_list_ops.gather怎么用?Python np_box_list_ops.gather使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.utils.np_box_list_ops的用法示例。


在下文中一共展示了np_box_list_ops.gather方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_gather_without_fields_specified

# 需要导入模块: from object_detection.utils import np_box_list_ops [as 别名]
# 或者: from object_detection.utils.np_box_list_ops import gather [as 别名]
def test_gather_without_fields_specified(self):
    indices = np.array([2, 0, 1], dtype=int)
    boxlist = self.boxlist
    subboxlist = np_box_list_ops.gather(boxlist, indices)

    expected_scores = np.array([0.9, 0.5, 0.7], dtype=float)
    self.assertAllClose(expected_scores, subboxlist.get_field('scores'))

    expected_boxes = np.array([[0.0, 0.0, 20.0, 20.0], [3.0, 4.0, 6.0, 8.0],
                               [14.0, 14.0, 15.0, 15.0]],
                              dtype=float)
    self.assertAllClose(expected_boxes, subboxlist.get())

    expected_labels = np.array([[0, 0, 0, 0, 1], [0, 0, 0, 1, 0],
                                [0, 1, 0, 0, 0]],
                               dtype=int)
    self.assertAllClose(expected_labels, subboxlist.get_field('labels')) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:19,代码来源:np_box_list_ops_test.py

示例2: test_gather_with_fields_specified

# 需要导入模块: from object_detection.utils import np_box_list_ops [as 别名]
# 或者: from object_detection.utils.np_box_list_ops import gather [as 别名]
def test_gather_with_fields_specified(self):
    indices = np.array([2, 0, 1], dtype=int)
    boxlist = self.boxlist
    subboxlist = np_box_list_ops.gather(boxlist, indices, ['labels'])

    self.assertFalse(subboxlist.has_field('scores'))

    expected_boxes = np.array([[0.0, 0.0, 20.0, 20.0], [3.0, 4.0, 6.0, 8.0],
                               [14.0, 14.0, 15.0, 15.0]],
                              dtype=float)
    self.assertAllClose(expected_boxes, subboxlist.get())

    expected_labels = np.array([[0, 0, 0, 0, 1], [0, 0, 0, 1, 0],
                                [0, 1, 0, 0, 0]],
                               dtype=int)
    self.assertAllClose(expected_labels, subboxlist.get_field('labels')) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:18,代码来源:np_box_list_ops_test.py

示例3: prune_non_overlapping_masks

# 需要导入模块: from object_detection.utils import np_box_list_ops [as 别名]
# 或者: from object_detection.utils.np_box_list_ops import gather [as 别名]
def prune_non_overlapping_masks(box_mask_list1, box_mask_list2, minoverlap=0.0):
  """Prunes the boxes in list1 that overlap less than thresh with list2.

  For each mask in box_mask_list1, we want its IOA to be more than minoverlap
  with at least one of the masks in box_mask_list2. If it does not, we remove
  it. If the masks are not full size image, we do the pruning based on boxes.

  Args:
    box_mask_list1: np_box_mask_list.BoxMaskList holding N boxes and masks.
    box_mask_list2: np_box_mask_list.BoxMaskList holding M boxes and masks.
    minoverlap: Minimum required overlap between boxes, to count them as
                overlapping.

  Returns:
    A pruned box_mask_list with size [N', 4].
  """
  intersection_over_area = ioa(box_mask_list2, box_mask_list1)  # [M, N] tensor
  intersection_over_area = np.amax(intersection_over_area, axis=0)  # [N] tensor
  keep_bool = np.greater_equal(intersection_over_area, np.array(minoverlap))
  keep_inds = np.nonzero(keep_bool)[0]
  new_box_mask_list1 = gather(box_mask_list1, keep_inds)
  return new_box_mask_list1 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:24,代码来源:np_box_mask_list_ops.py


注:本文中的object_detection.utils.np_box_list_ops.gather方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。