本文整理汇总了Python中object_detection.utils.metrics.compute_median_rank_at_k方法的典型用法代码示例。如果您正苦于以下问题:Python metrics.compute_median_rank_at_k方法的具体用法?Python metrics.compute_median_rank_at_k怎么用?Python metrics.compute_median_rank_at_k使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类object_detection.utils.metrics
的用法示例。
在下文中一共展示了metrics.compute_median_rank_at_k方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_compute_median_rank_at_k
# 需要导入模块: from object_detection.utils import metrics [as 别名]
# 或者: from object_detection.utils.metrics import compute_median_rank_at_k [as 别名]
def test_compute_median_rank_at_k(self):
tp_fp = [
np.array([1, 0, 0], dtype=float),
np.array([0, 0.1], dtype=float),
np.array([0, 0, 0, 0, 0], dtype=float)
]
tp_fp_bool = [
np.array([True, False, False], dtype=bool),
np.array([False, True], dtype=float),
np.array([False, False, False, False, False], dtype=float)
]
median_ranks_1 = metrics.compute_median_rank_at_k(tp_fp, 1)
median_ranks_3 = metrics.compute_median_rank_at_k(tp_fp, 3)
median_ranks_5 = metrics.compute_median_rank_at_k(tp_fp, 5)
median_ranks_3_bool = metrics.compute_median_rank_at_k(tp_fp_bool, 3)
self.assertEquals(median_ranks_1, 0)
self.assertEquals(median_ranks_3, 0.5)
self.assertEquals(median_ranks_3_bool, 0.5)
self.assertEquals(median_ranks_5, 0.5)
示例2: test_compute_median_rank_at_k
# 需要导入模块: from object_detection.utils import metrics [as 别名]
# 或者: from object_detection.utils.metrics import compute_median_rank_at_k [as 别名]
def test_compute_median_rank_at_k(self):
tp_fp = [
np.array([1, 0, 0], dtype=float),
np.array([0, 0.1], dtype=float),
np.array([0, 0, 0, 0, 0], dtype=float)
]
tp_fp_bool = [
np.array([True, False, False], dtype=bool),
np.array([False, True], dtype=float),
np.array([False, False, False, False, False], dtype=float)
]
median_ranks_1 = metrics.compute_median_rank_at_k(tp_fp, 1)
median_ranks_3 = metrics.compute_median_rank_at_k(tp_fp, 3)
median_ranks_5 = metrics.compute_median_rank_at_k(tp_fp, 5)
median_ranks_3_bool = metrics.compute_median_rank_at_k(tp_fp_bool, 3)
self.assertEqual(median_ranks_1, 0)
self.assertEqual(median_ranks_3, 0.5)
self.assertEqual(median_ranks_3_bool, 0.5)
self.assertEqual(median_ranks_5, 0.5)
示例3: evaluate
# 需要导入模块: from object_detection.utils import metrics [as 别名]
# 或者: from object_detection.utils.metrics import compute_median_rank_at_k [as 别名]
def evaluate(self):
"""Computes evaluation result.
Returns:
A named tuple with the following fields -
average_precision: a float number corresponding to average precision.
precisions: an array of precisions.
recalls: an array of recalls.
recall@50: recall computed on 50 top-scoring samples.
recall@100: recall computed on 100 top-scoring samples.
median_rank@50: median rank computed on 50 top-scoring samples.
median_rank@100: median rank computed on 100 top-scoring samples.
"""
if self._num_gt_instances == 0:
logging.warn('No ground truth instances')
if not self._scores:
scores = np.array([], dtype=float)
tp_fp_labels = np.array([], dtype=bool)
else:
scores = np.concatenate(self._scores)
tp_fp_labels = np.concatenate(self._tp_fp_labels)
relation_field_values = np.concatenate(self._relation_field_values)
for relation_field_value, _ in (
self._num_gt_instances_per_relationship.iteritems()):
precisions, recalls = metrics.compute_precision_recall(
scores[relation_field_values == relation_field_value],
tp_fp_labels[relation_field_values == relation_field_value],
self._num_gt_instances_per_relationship[relation_field_value])
self._average_precisions[
relation_field_value] = metrics.compute_average_precision(
precisions, recalls)
self._mean_average_precision = np.mean(self._average_precisions.values())
self._precisions, self._recalls = metrics.compute_precision_recall(
scores, tp_fp_labels, self._num_gt_instances)
self._weighted_average_precision = metrics.compute_average_precision(
self._precisions, self._recalls)
self._recall_50 = (
metrics.compute_recall_at_k(self._tp_fp_labels, self._num_gt_instances,
50))
self._median_rank_50 = (
metrics.compute_median_rank_at_k(self._tp_fp_labels, 50))
self._recall_100 = (
metrics.compute_recall_at_k(self._tp_fp_labels, self._num_gt_instances,
100))
self._median_rank_100 = (
metrics.compute_median_rank_at_k(self._tp_fp_labels, 100))
return VRDDetectionEvalMetrics(
self._weighted_average_precision, self._mean_average_precision,
self._average_precisions, self._precisions, self._recalls,
self._recall_50, self._recall_100, self._median_rank_50,
self._median_rank_100)
示例4: evaluate
# 需要导入模块: from object_detection.utils import metrics [as 别名]
# 或者: from object_detection.utils.metrics import compute_median_rank_at_k [as 别名]
def evaluate(self):
"""Computes evaluation result.
Returns:
A named tuple with the following fields -
average_precision: a float number corresponding to average precision.
precisions: an array of precisions.
recalls: an array of recalls.
recall@50: recall computed on 50 top-scoring samples.
recall@100: recall computed on 100 top-scoring samples.
median_rank@50: median rank computed on 50 top-scoring samples.
median_rank@100: median rank computed on 100 top-scoring samples.
"""
if self._num_gt_instances == 0:
logging.warning('No ground truth instances')
if not self._scores:
scores = np.array([], dtype=float)
tp_fp_labels = np.array([], dtype=bool)
else:
scores = np.concatenate(self._scores)
tp_fp_labels = np.concatenate(self._tp_fp_labels)
relation_field_values = np.concatenate(self._relation_field_values)
for relation_field_value, _ in (six.iteritems(
self._num_gt_instances_per_relationship)):
precisions, recalls = metrics.compute_precision_recall(
scores[relation_field_values == relation_field_value],
tp_fp_labels[relation_field_values == relation_field_value],
self._num_gt_instances_per_relationship[relation_field_value])
self._average_precisions[
relation_field_value] = metrics.compute_average_precision(
precisions, recalls)
self._mean_average_precision = np.mean(
list(self._average_precisions.values()))
self._precisions, self._recalls = metrics.compute_precision_recall(
scores, tp_fp_labels, self._num_gt_instances)
self._weighted_average_precision = metrics.compute_average_precision(
self._precisions, self._recalls)
self._recall_50 = (
metrics.compute_recall_at_k(self._tp_fp_labels, self._num_gt_instances,
50))
self._median_rank_50 = (
metrics.compute_median_rank_at_k(self._tp_fp_labels, 50))
self._recall_100 = (
metrics.compute_recall_at_k(self._tp_fp_labels, self._num_gt_instances,
100))
self._median_rank_100 = (
metrics.compute_median_rank_at_k(self._tp_fp_labels, 100))
return VRDDetectionEvalMetrics(
self._weighted_average_precision, self._mean_average_precision,
self._average_precisions, self._precisions, self._recalls,
self._recall_50, self._recall_100, self._median_rank_50,
self._median_rank_100)
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:60,代码来源:vrd_evaluation.py