当前位置: 首页>>代码示例>>Python>>正文


Python learning_schedules.manual_stepping方法代码示例

本文整理汇总了Python中object_detection.utils.learning_schedules.manual_stepping方法的典型用法代码示例。如果您正苦于以下问题:Python learning_schedules.manual_stepping方法的具体用法?Python learning_schedules.manual_stepping怎么用?Python learning_schedules.manual_stepping使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.utils.learning_schedules的用法示例。


在下文中一共展示了learning_schedules.manual_stepping方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testManualStepping

# 需要导入模块: from object_detection.utils import learning_schedules [as 别名]
# 或者: from object_detection.utils.learning_schedules import manual_stepping [as 别名]
def testManualStepping(self):
    global_step = tf.placeholder(tf.int64, [])
    boundaries = [2, 3, 7]
    rates = [1.0, 2.0, 3.0, 4.0]
    exp_rates = [1.0, 1.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0]
    learning_rate = learning_schedules.manual_stepping(global_step, boundaries,
                                                       rates)
    with self.test_session() as sess:
      output_rates = []
      for input_global_step in range(10):
        output_rate = sess.run(learning_rate,
                               feed_dict={global_step: input_global_step})
        output_rates.append(output_rate)
      self.assertAllClose(output_rates, exp_rates) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:16,代码来源:learning_schedules_test.py

示例2: testManualStepping

# 需要导入模块: from object_detection.utils import learning_schedules [as 别名]
# 或者: from object_detection.utils.learning_schedules import manual_stepping [as 别名]
def testManualStepping(self):
    def graph_fn(global_step):
      boundaries = [2, 3, 7]
      rates = [1.0, 2.0, 3.0, 4.0]
      learning_rate = learning_schedules.manual_stepping(
          global_step, boundaries, rates)
      assert learning_rate.op.name.endswith('learning_rate')
      return (learning_rate,)

    output_rates = [
        self.execute(graph_fn, [np.array(i).astype(np.int64)])
        for i in range(10)
    ]
    exp_rates = [1.0, 1.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0]
    self.assertAllClose(output_rates, exp_rates) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:17,代码来源:learning_schedules_test.py

示例3: testManualSteppingWithWarmup

# 需要导入模块: from object_detection.utils import learning_schedules [as 别名]
# 或者: from object_detection.utils.learning_schedules import manual_stepping [as 别名]
def testManualSteppingWithWarmup(self):
    def graph_fn(global_step):
      boundaries = [4, 6, 8]
      rates = [0.02, 0.10, 0.01, 0.001]
      learning_rate = learning_schedules.manual_stepping(
          global_step, boundaries, rates, warmup=True)
      assert learning_rate.op.name.endswith('learning_rate')
      return (learning_rate,)

    output_rates = [
        self.execute(graph_fn, [np.array(i).astype(np.int64)])
        for i in range(9)
    ]
    exp_rates = [0.02, 0.04, 0.06, 0.08, 0.10, 0.10, 0.01, 0.01, 0.001]
    self.assertAllClose(output_rates, exp_rates) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:17,代码来源:learning_schedules_test.py

示例4: testManualSteppingWithZeroBoundaries

# 需要导入模块: from object_detection.utils import learning_schedules [as 别名]
# 或者: from object_detection.utils.learning_schedules import manual_stepping [as 别名]
def testManualSteppingWithZeroBoundaries(self):
    def graph_fn(global_step):
      boundaries = []
      rates = [0.01]
      learning_rate = learning_schedules.manual_stepping(
          global_step, boundaries, rates)
      return (learning_rate,)

    output_rates = [
        self.execute(graph_fn, [np.array(i).astype(np.int64)])
        for i in range(4)
    ]
    exp_rates = [0.01] * 4
    self.assertAllClose(output_rates, exp_rates) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:16,代码来源:learning_schedules_test.py


注:本文中的object_detection.utils.learning_schedules.manual_stepping方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。