本文整理汇总了Python中object_detection.utils.label_map_util.convert_label_map_to_categories方法的典型用法代码示例。如果您正苦于以下问题:Python label_map_util.convert_label_map_to_categories方法的具体用法?Python label_map_util.convert_label_map_to_categories怎么用?Python label_map_util.convert_label_map_to_categories使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类object_detection.utils.label_map_util
的用法示例。
在下文中一共展示了label_map_util.convert_label_map_to_categories方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from object_detection.utils import label_map_util [as 别名]
# 或者: from object_detection.utils.label_map_util import convert_label_map_to_categories [as 别名]
def main(unused_argv):
assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.'
assert FLAGS.eval_dir, '`eval_dir` is missing.'
if FLAGS.pipeline_config_path:
model_config, eval_config, input_config = get_configs_from_pipeline_file()
else:
model_config, eval_config, input_config = get_configs_from_multiple_files()
model_fn = functools.partial(
model_builder.build,
model_config=model_config,
is_training=False)
create_input_dict_fn = functools.partial(
input_reader_builder.build,
input_config)
label_map = label_map_util.load_labelmap(input_config.label_map_path)
max_num_classes = max([item.id for item in label_map.item])
categories = label_map_util.convert_label_map_to_categories(
label_map, max_num_classes)
evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories,
FLAGS.checkpoint_dir, FLAGS.eval_dir)
示例2: load_model
# 需要导入模块: from object_detection.utils import label_map_util [as 别名]
# 或者: from object_detection.utils.label_map_util import convert_label_map_to_categories [as 别名]
def load_model(self):
"""
Loads the detection model
Args:
Returns:
"""
with self._detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(self._path_to_ckpt, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
label_map = label_map_util.load_labelmap(self._path_to_labels)
categories = label_map_util.convert_label_map_to_categories(\
label_map, max_num_classes=self._num_classes, use_display_name=True)
self.category_index = label_map_util.create_category_index(categories)
示例3: evaluate
# 需要导入模块: from object_detection.utils import label_map_util [as 别名]
# 或者: from object_detection.utils.label_map_util import convert_label_map_to_categories [as 别名]
def evaluate(self, eval_pipeline_file, model_dir, eval_dir):
configs = self._get_configs_from_pipeline_file(eval_pipeline_file)
model_config = configs['model']
eval_config = configs['eval_config']
input_config = configs['eval_input_config']
model_fn = functools.partial(
model_builder.build,
model_config=model_config,
is_training=True)
create_input_dict_fn = functools.partial(self.get_next, input_config)
label_map = label_map_util.load_labelmap(input_config.label_map_path)
max_num_classes = max([item.id for item in label_map.item])
categories = label_map_util.convert_label_map_to_categories(
label_map, max_num_classes)
evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories,
model_dir, eval_dir)
示例4: test_keep_categories_with_unique_id
# 需要导入模块: from object_detection.utils import label_map_util [as 别名]
# 或者: from object_detection.utils.label_map_util import convert_label_map_to_categories [as 别名]
def test_keep_categories_with_unique_id(self):
label_map_proto = string_int_label_map_pb2.StringIntLabelMap()
label_map_string = """
item {
id:2
name:'cat'
}
item {
id:1
name:'child'
}
item {
id:1
name:'person'
}
item {
id:1
name:'n00007846'
}
"""
text_format.Merge(label_map_string, label_map_proto)
categories = label_map_util.convert_label_map_to_categories(
label_map_proto, max_num_classes=3)
self.assertListEqual([{
'id': 2,
'name': u'cat'
}, {
'id': 1,
'name': u'child'
}], categories)
示例5: test_convert_label_map_to_categories_no_label_map
# 需要导入模块: from object_detection.utils import label_map_util [as 别名]
# 或者: from object_detection.utils.label_map_util import convert_label_map_to_categories [as 别名]
def test_convert_label_map_to_categories_no_label_map(self):
categories = label_map_util.convert_label_map_to_categories(
None, max_num_classes=3)
expected_categories_list = [{
'name': u'category_1',
'id': 1
}, {
'name': u'category_2',
'id': 2
}, {
'name': u'category_3',
'id': 3
}]
self.assertListEqual(expected_categories_list, categories)
示例6: test_convert_label_map_to_coco_categories
# 需要导入模块: from object_detection.utils import label_map_util [as 别名]
# 或者: from object_detection.utils.label_map_util import convert_label_map_to_categories [as 别名]
def test_convert_label_map_to_coco_categories(self):
label_map_proto = self._generate_label_map(num_classes=4)
categories = label_map_util.convert_label_map_to_categories(
label_map_proto, max_num_classes=3)
expected_categories_list = [{
'name': u'1',
'id': 1
}, {
'name': u'2',
'id': 2
}, {
'name': u'3',
'id': 3
}]
self.assertListEqual(expected_categories_list, categories)
示例7: test_convert_label_map_to_coco_categories_with_few_classes
# 需要导入模块: from object_detection.utils import label_map_util [as 别名]
# 或者: from object_detection.utils.label_map_util import convert_label_map_to_categories [as 别名]
def test_convert_label_map_to_coco_categories_with_few_classes(self):
label_map_proto = self._generate_label_map(num_classes=4)
cat_no_offset = label_map_util.convert_label_map_to_categories(
label_map_proto, max_num_classes=2)
expected_categories_list = [{
'name': u'1',
'id': 1
}, {
'name': u'2',
'id': 2
}]
self.assertListEqual(expected_categories_list, cat_no_offset)
示例8: test_convert_label_map_to_categories
# 需要导入模块: from object_detection.utils import label_map_util [as 别名]
# 或者: from object_detection.utils.label_map_util import convert_label_map_to_categories [as 别名]
def test_convert_label_map_to_categories(self):
label_map_proto = self._generate_label_map(num_classes=4)
categories = label_map_util.convert_label_map_to_categories(
label_map_proto, max_num_classes=3)
expected_categories_list = [{
'name': u'1',
'id': 1
}, {
'name': u'2',
'id': 2
}, {
'name': u'3',
'id': 3
}]
self.assertListEqual(expected_categories_list, categories)
示例9: test_convert_label_map_to_categories_with_few_classes
# 需要导入模块: from object_detection.utils import label_map_util [as 别名]
# 或者: from object_detection.utils.label_map_util import convert_label_map_to_categories [as 别名]
def test_convert_label_map_to_categories_with_few_classes(self):
label_map_proto = self._generate_label_map(num_classes=4)
cat_no_offset = label_map_util.convert_label_map_to_categories(
label_map_proto, max_num_classes=2)
expected_categories_list = [{
'name': u'1',
'id': 1
}, {
'name': u'2',
'id': 2
}]
self.assertListEqual(expected_categories_list, cat_no_offset)
示例10: load
# 需要导入模块: from object_detection.utils import label_map_util [as 别名]
# 或者: from object_detection.utils.label_map_util import convert_label_map_to_categories [as 别名]
def load(self):
with open(os.path.join(self.model_path, 'config.json')) as f:
data = json.load(f)
try:
self.validate_json_configuration(data)
self.set_model_configuration(data)
except ApplicationError as e:
raise e
self.label_path = os.path.join(self.model_path, 'object-detection.pbtxt')
self.label_map = label_map_util.load_labelmap(self.label_path)
self.categories = label_map_util.convert_label_map_to_categories(self.label_map,
max_num_classes=self.NUM_CLASSES,
use_display_name=True)
for dict in self.categories:
self.labels.append(dict['name'])
self.category_index = label_map_util.create_category_index(self.categories)
self.detection_graph = tf.Graph()
with self.detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(os.path.join(self.model_path, 'frozen_inference_graph.pb'), 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0')
self.d_boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0')
self.d_scores = self.detection_graph.get_tensor_by_name('detection_scores:0')
self.d_classes = self.detection_graph.get_tensor_by_name('detection_classes:0')
self.num_d = self.detection_graph.get_tensor_by_name('num_detections:0')
self.sess = tf.Session(graph=self.detection_graph)
img = Image.open("object_detection/image1.jpg")
img_expanded = np.expand_dims(img, axis=0)
self.sess.run(
[self.d_boxes, self.d_scores, self.d_classes, self.num_d],
feed_dict={self.image_tensor: img_expanded})
示例11: format_output
# 需要导入模块: from object_detection.utils import label_map_util [as 别名]
# 或者: from object_detection.utils.label_map_util import convert_label_map_to_categories [as 别名]
def format_output(self, results, im_width, im_height, threshold):
label_map = label_map_util.load_labelmap(self.label_map)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=90, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
vis_results = []
for i in range(len(results)):
output_dict = results[i]
boxes = output_dict['detection_boxes']
classes = output_dict['detection_classes']
scores = output_dict['detection_scores']
for j in range(boxes.shape[0]):
if scores[i] > threshold:
result = {}
ymin, xmin, ymax, xmax = tuple(boxes[i].tolist())
result['x_min'] = xmin * im_width
result['x_max'] = xmax * im_width
result['y_min'] = ymin * im_height
result['y_max'] = ymax * im_height
result['score'] = float(scores[i])
if classes[i] in category_index.keys():
class_name = category_index[classes[i]]['name']
else:
class_name = 'N/A'
result['class_name'] = str(class_name)
if result not in vis_results:
vis_results.append(result)
return vis_results