当前位置: 首页>>代码示例>>Python>>正文


Python dataset_util.make_initializable_iterator方法代码示例

本文整理汇总了Python中object_detection.utils.dataset_util.make_initializable_iterator方法的典型用法代码示例。如果您正苦于以下问题:Python dataset_util.make_initializable_iterator方法的具体用法?Python dataset_util.make_initializable_iterator怎么用?Python dataset_util.make_initializable_iterator使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.utils.dataset_util的用法示例。


在下文中一共展示了dataset_util.make_initializable_iterator方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_build_tf_record_input_reader_and_load_instance_masks

# 需要导入模块: from object_detection.utils import dataset_util [as 别名]
# 或者: from object_detection.utils.dataset_util import make_initializable_iterator [as 别名]
def test_build_tf_record_input_reader_and_load_instance_masks(self):
    tf_record_path = self.create_tf_record()

    input_reader_text_proto = """
      shuffle: false
      num_readers: 1
      load_instance_masks: true
      tf_record_input_reader {{
        input_path: '{0}'
      }}
    """.format(tf_record_path)
    input_reader_proto = input_reader_pb2.InputReader()
    text_format.Merge(input_reader_text_proto, input_reader_proto)
    tensor_dict = dataset_util.make_initializable_iterator(
        dataset_builder.build(input_reader_proto, batch_size=1)).get_next()

    sv = tf.train.Supervisor(logdir=self.get_temp_dir())
    with sv.prepare_or_wait_for_session() as sess:
      sv.start_queue_runners(sess)
      output_dict = sess.run(tensor_dict)
    self.assertAllEqual(
        (1, 1, 4, 5),
        output_dict[fields.InputDataFields.groundtruth_instance_masks].shape) 
开发者ID:cagbal,项目名称:ros_people_object_detection_tensorflow,代码行数:25,代码来源:dataset_builder_test.py

示例2: test_build_tf_record_input_reader_with_additional_channels

# 需要导入模块: from object_detection.utils import dataset_util [as 别名]
# 或者: from object_detection.utils.dataset_util import make_initializable_iterator [as 别名]
def test_build_tf_record_input_reader_with_additional_channels(self):
    tf_record_path = self.create_tf_record(has_additional_channels=True)

    input_reader_text_proto = """
      shuffle: false
      num_readers: 1
      tf_record_input_reader {{
        input_path: '{0}'
      }}
    """.format(tf_record_path)
    input_reader_proto = input_reader_pb2.InputReader()
    text_format.Merge(input_reader_text_proto, input_reader_proto)
    tensor_dict = dataset_util.make_initializable_iterator(
        dataset_builder.build(
            input_reader_proto, batch_size=2,
            num_additional_channels=2)).get_next()

    sv = tf.train.Supervisor(logdir=self.get_temp_dir())
    with sv.prepare_or_wait_for_session() as sess:
      sv.start_queue_runners(sess)
      output_dict = sess.run(tensor_dict)

    self.assertEquals((2, 4, 5, 5),
                      output_dict[fields.InputDataFields.image].shape) 
开发者ID:ambakick,项目名称:Person-Detection-and-Tracking,代码行数:26,代码来源:dataset_builder_test.py

示例3: test_build_tf_record_input_reader_and_load_instance_masks

# 需要导入模块: from object_detection.utils import dataset_util [as 别名]
# 或者: from object_detection.utils.dataset_util import make_initializable_iterator [as 别名]
def test_build_tf_record_input_reader_and_load_instance_masks(self):
    tf_record_path = self.create_tf_record()

    input_reader_text_proto = """
      shuffle: false
      num_readers: 1
      load_instance_masks: true
      tf_record_input_reader {{
        input_path: '{0}'
      }}
    """.format(tf_record_path)
    input_reader_proto = input_reader_pb2.InputReader()
    text_format.Merge(input_reader_text_proto, input_reader_proto)
    tensor_dict = dataset_util.make_initializable_iterator(
        dataset_builder.build(input_reader_proto)).get_next()

    sv = tf.train.Supervisor(logdir=self.get_temp_dir())
    with sv.prepare_or_wait_for_session() as sess:
      sv.start_queue_runners(sess)
      output_dict = sess.run(tensor_dict)
    self.assertAllEqual(
        (1, 4, 5),
        output_dict[fields.InputDataFields.groundtruth_instance_masks].shape) 
开发者ID:ShreyAmbesh,项目名称:Traffic-Rule-Violation-Detection-System,代码行数:25,代码来源:dataset_builder_test.py

示例4: test_make_initializable_iterator_with_hashTable

# 需要导入模块: from object_detection.utils import dataset_util [as 别名]
# 或者: from object_detection.utils.dataset_util import make_initializable_iterator [as 别名]
def test_make_initializable_iterator_with_hashTable(self):
    keys = [1, 0, -1]
    dataset = tf.data.Dataset.from_tensor_slices([[1, 2, -1, 5]])
    table = tf.contrib.lookup.HashTable(
        initializer=tf.contrib.lookup.KeyValueTensorInitializer(
            keys=keys,
            values=list(reversed(keys))),
        default_value=100)
    dataset = dataset.map(table.lookup)
    data = dataset_util.make_initializable_iterator(dataset).get_next()
    init = tf.tables_initializer()

    with self.test_session() as sess:
      sess.run(init)
      self.assertAllEqual(sess.run(data), [-1, 100, 1, 100]) 
开发者ID:cagbal,项目名称:ros_people_object_detection_tensorflow,代码行数:17,代码来源:dataset_util_test.py

示例5: test_build_tf_record_input_reader

# 需要导入模块: from object_detection.utils import dataset_util [as 别名]
# 或者: from object_detection.utils.dataset_util import make_initializable_iterator [as 别名]
def test_build_tf_record_input_reader(self):
    tf_record_path = self.create_tf_record()

    input_reader_text_proto = """
      shuffle: false
      num_readers: 1
      tf_record_input_reader {{
        input_path: '{0}'
      }}
    """.format(tf_record_path)
    input_reader_proto = input_reader_pb2.InputReader()
    text_format.Merge(input_reader_text_proto, input_reader_proto)
    tensor_dict = dataset_util.make_initializable_iterator(
        dataset_builder.build(input_reader_proto, batch_size=1)).get_next()

    sv = tf.train.Supervisor(logdir=self.get_temp_dir())
    with sv.prepare_or_wait_for_session() as sess:
      sv.start_queue_runners(sess)
      output_dict = sess.run(tensor_dict)

    self.assertTrue(
        fields.InputDataFields.groundtruth_instance_masks not in output_dict)
    self.assertEquals((1, 4, 5, 3),
                      output_dict[fields.InputDataFields.image].shape)
    self.assertAllEqual([[2]],
                        output_dict[fields.InputDataFields.groundtruth_classes])
    self.assertEquals(
        (1, 1, 4), output_dict[fields.InputDataFields.groundtruth_boxes].shape)
    self.assertAllEqual(
        [0.0, 0.0, 1.0, 1.0],
        output_dict[fields.InputDataFields.groundtruth_boxes][0][0]) 
开发者ID:cagbal,项目名称:ros_people_object_detection_tensorflow,代码行数:33,代码来源:dataset_builder_test.py

示例6: get_next

# 需要导入模块: from object_detection.utils import dataset_util [as 别名]
# 或者: from object_detection.utils.dataset_util import make_initializable_iterator [as 别名]
def get_next(self, config):
        return dataset_util.make_initializable_iterator(
            dataset_builder.build(config)).get_next() 
开发者ID:autoai-org,项目名称:CVTron,代码行数:5,代码来源:object_detection_trainer.py

示例7: test_build_tf_record_input_reader

# 需要导入模块: from object_detection.utils import dataset_util [as 别名]
# 或者: from object_detection.utils.dataset_util import make_initializable_iterator [as 别名]
def test_build_tf_record_input_reader(self):
    tf_record_path = self.create_tf_record()

    input_reader_text_proto = """
      shuffle: false
      num_readers: 1
      tf_record_input_reader {{
        input_path: '{0}'
      }}
    """.format(tf_record_path)
    input_reader_proto = input_reader_pb2.InputReader()
    text_format.Merge(input_reader_text_proto, input_reader_proto)
    tensor_dict = dataset_util.make_initializable_iterator(
        dataset_builder.build(input_reader_proto)).get_next()

    sv = tf.train.Supervisor(logdir=self.get_temp_dir())
    with sv.prepare_or_wait_for_session() as sess:
      sv.start_queue_runners(sess)
      output_dict = sess.run(tensor_dict)

    self.assertTrue(
        fields.InputDataFields.groundtruth_instance_masks not in output_dict)
    self.assertEquals((4, 5, 3),
                      output_dict[fields.InputDataFields.image].shape)
    self.assertEquals([2],
                      output_dict[fields.InputDataFields.groundtruth_classes])
    self.assertEquals(
        (1, 4), output_dict[fields.InputDataFields.groundtruth_boxes].shape)
    self.assertAllEqual(
        [0.0, 0.0, 1.0, 1.0],
        output_dict[fields.InputDataFields.groundtruth_boxes][0]) 
开发者ID:ShreyAmbesh,项目名称:Traffic-Rule-Violation-Detection-System,代码行数:33,代码来源:dataset_builder_test.py

示例8: test_build_tf_record_input_reader_with_batch_size_two_and_masks

# 需要导入模块: from object_detection.utils import dataset_util [as 别名]
# 或者: from object_detection.utils.dataset_util import make_initializable_iterator [as 别名]
def test_build_tf_record_input_reader_with_batch_size_two_and_masks(self):
    tf_record_path = self.create_tf_record()

    input_reader_text_proto = """
      shuffle: false
      num_readers: 1
      load_instance_masks: true
      tf_record_input_reader {{
        input_path: '{0}'
      }}
    """.format(tf_record_path)
    input_reader_proto = input_reader_pb2.InputReader()
    text_format.Merge(input_reader_text_proto, input_reader_proto)

    def one_hot_class_encoding_fn(tensor_dict):
      tensor_dict[fields.InputDataFields.groundtruth_classes] = tf.one_hot(
          tensor_dict[fields.InputDataFields.groundtruth_classes] - 1, depth=3)
      return tensor_dict

    tensor_dict = dataset_util.make_initializable_iterator(
        dataset_builder.build(
            input_reader_proto,
            transform_input_data_fn=one_hot_class_encoding_fn,
            batch_size=2,
            max_num_boxes=2,
            num_classes=3,
            spatial_image_shape=[4, 5])).get_next()

    sv = tf.train.Supervisor(logdir=self.get_temp_dir())
    with sv.prepare_or_wait_for_session() as sess:
      sv.start_queue_runners(sess)
      output_dict = sess.run(tensor_dict)

    self.assertAllEqual(
        [2, 2, 4, 5],
        output_dict[fields.InputDataFields.groundtruth_instance_masks].shape) 
开发者ID:jerryli27,项目名称:AniSeg,代码行数:38,代码来源:dataset_builder_test.py

示例9: main

# 需要导入模块: from object_detection.utils import dataset_util [as 别名]
# 或者: from object_detection.utils.dataset_util import make_initializable_iterator [as 别名]
def main(unused_argv):
  assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.'
  assert FLAGS.eval_dir, '`eval_dir` is missing.'
  tf.gfile.MakeDirs(FLAGS.eval_dir)
  if FLAGS.pipeline_config_path:
    configs = config_util.get_configs_from_pipeline_file(
        FLAGS.pipeline_config_path)
    tf.gfile.Copy(FLAGS.pipeline_config_path,
                  os.path.join(FLAGS.eval_dir, 'pipeline.config'),
                  overwrite=True)
  else:
    configs = config_util.get_configs_from_multiple_files(
        model_config_path=FLAGS.model_config_path,
        eval_config_path=FLAGS.eval_config_path,
        eval_input_config_path=FLAGS.input_config_path)
    for name, config in [('model.config', FLAGS.model_config_path),
                         ('eval.config', FLAGS.eval_config_path),
                         ('input.config', FLAGS.input_config_path)]:
      tf.gfile.Copy(config,
                    os.path.join(FLAGS.eval_dir, name),
                    overwrite=True)

  model_config = configs['model']
  eval_config = configs['eval_config']
  input_config = configs['eval_input_config']
  if FLAGS.eval_training_data:
    input_config = configs['train_input_config']

  model_fn = functools.partial(
      model_builder.build,
      model_config=model_config,
      is_training=False)

  def get_next(config):
    return dataset_util.make_initializable_iterator(
        dataset_builder.build(config)).get_next()

  create_input_dict_fn = functools.partial(get_next, input_config)

  label_map = label_map_util.load_labelmap(input_config.label_map_path)
  max_num_classes = max([item.id for item in label_map.item])
  categories = label_map_util.convert_label_map_to_categories(
      label_map, max_num_classes)

  if FLAGS.run_once:
    eval_config.max_evals = 1

  evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories,
                     FLAGS.checkpoint_dir, FLAGS.eval_dir) 
开发者ID:cagbal,项目名称:ros_people_object_detection_tensorflow,代码行数:51,代码来源:eval.py

示例10: test_build_tf_record_input_reader_with_batch_size_two

# 需要导入模块: from object_detection.utils import dataset_util [as 别名]
# 或者: from object_detection.utils.dataset_util import make_initializable_iterator [as 别名]
def test_build_tf_record_input_reader_with_batch_size_two(self):
    tf_record_path = self.create_tf_record()

    input_reader_text_proto = """
      shuffle: false
      num_readers: 1
      tf_record_input_reader {{
        input_path: '{0}'
      }}
    """.format(tf_record_path)
    input_reader_proto = input_reader_pb2.InputReader()
    text_format.Merge(input_reader_text_proto, input_reader_proto)

    def one_hot_class_encoding_fn(tensor_dict):
      tensor_dict[fields.InputDataFields.groundtruth_classes] = tf.one_hot(
          tensor_dict[fields.InputDataFields.groundtruth_classes] - 1, depth=3)
      return tensor_dict

    tensor_dict = dataset_util.make_initializable_iterator(
        dataset_builder.build(
            input_reader_proto,
            transform_input_data_fn=one_hot_class_encoding_fn,
            batch_size=2,
            max_num_boxes=2,
            num_classes=3,
            spatial_image_shape=[4, 5])).get_next()

    sv = tf.train.Supervisor(logdir=self.get_temp_dir())
    with sv.prepare_or_wait_for_session() as sess:
      sv.start_queue_runners(sess)
      output_dict = sess.run(tensor_dict)

    self.assertAllEqual([2, 4, 5, 3],
                        output_dict[fields.InputDataFields.image].shape)
    self.assertAllEqual([2, 2, 3],
                        output_dict[fields.InputDataFields.groundtruth_classes].
                        shape)
    self.assertAllEqual([2, 2, 4],
                        output_dict[fields.InputDataFields.groundtruth_boxes].
                        shape)
    self.assertAllEqual(
        [[[0.0, 0.0, 1.0, 1.0],
          [0.0, 0.0, 0.0, 0.0]],
         [[0.0, 0.0, 1.0, 1.0],
          [0.0, 0.0, 0.0, 0.0]]],
        output_dict[fields.InputDataFields.groundtruth_boxes]) 
开发者ID:cagbal,项目名称:ros_people_object_detection_tensorflow,代码行数:48,代码来源:dataset_builder_test.py

示例11: main

# 需要导入模块: from object_detection.utils import dataset_util [as 别名]
# 或者: from object_detection.utils.dataset_util import make_initializable_iterator [as 别名]
def main(unused_argv):
  assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.'
  assert FLAGS.eval_dir, '`eval_dir` is missing.'
  tf.gfile.MakeDirs(FLAGS.eval_dir)
  if FLAGS.pipeline_config_path:
    configs = config_util.get_configs_from_pipeline_file(
        FLAGS.pipeline_config_path)
    tf.gfile.Copy(FLAGS.pipeline_config_path,
                  os.path.join(FLAGS.eval_dir, 'pipeline.config'),
                  overwrite=True)
  else:
    configs = config_util.get_configs_from_multiple_files(
        model_config_path=FLAGS.model_config_path,
        eval_config_path=FLAGS.eval_config_path,
        eval_input_config_path=FLAGS.input_config_path)
    for name, config in [('model.config', FLAGS.model_config_path),
                         ('eval.config', FLAGS.eval_config_path),
                         ('input.config', FLAGS.input_config_path)]:
      tf.gfile.Copy(config,
                    os.path.join(FLAGS.eval_dir, name),
                    overwrite=True)

  model_config = configs['model']
  eval_config = configs['eval_config']
  input_config = configs['eval_input_config']
  if FLAGS.eval_training_data:
    input_config = configs['train_input_config']

  model_fn = functools.partial(
      model_builder.build,
      model_config=model_config,
      is_training=False)

  def get_next(config):
    return dataset_util.make_initializable_iterator(
        dataset_builder.build(config)).get_next()

  create_input_dict_fn = functools.partial(get_next, input_config)

  label_map = label_map_util.load_labelmap(input_config.label_map_path)
  max_num_classes = max([item.id for item in label_map.item])
  categories = label_map_util.convert_label_map_to_categories(
      label_map, max_num_classes)

  if FLAGS.run_once:
    eval_config.max_evals = 1

  graph_rewriter_fn = None
  if 'graph_rewriter_config' in configs:
    graph_rewriter_fn = graph_rewriter_builder.build(
        configs['graph_rewriter_config'], is_training=False)

  evaluator.evaluate(
      create_input_dict_fn,
      model_fn,
      eval_config,
      categories,
      FLAGS.checkpoint_dir,
      FLAGS.eval_dir,
      graph_hook_fn=graph_rewriter_fn) 
开发者ID:ambakick,项目名称:Person-Detection-and-Tracking,代码行数:62,代码来源:eval.py


注:本文中的object_detection.utils.dataset_util.make_initializable_iterator方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。