本文整理汇总了Python中object_detection.utils.config_util.get_image_resizer_config方法的典型用法代码示例。如果您正苦于以下问题:Python config_util.get_image_resizer_config方法的具体用法?Python config_util.get_image_resizer_config怎么用?Python config_util.get_image_resizer_config使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类object_detection.utils.config_util
的用法示例。
在下文中一共展示了config_util.get_image_resizer_config方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testGetImageResizerConfig
# 需要导入模块: from object_detection.utils import config_util [as 别名]
# 或者: from object_detection.utils.config_util import get_image_resizer_config [as 别名]
def testGetImageResizerConfig(self):
"""Tests that number of classes can be retrieved."""
model_config = model_pb2.DetectionModel()
model_config.faster_rcnn.image_resizer.fixed_shape_resizer.height = 100
model_config.faster_rcnn.image_resizer.fixed_shape_resizer.width = 300
image_resizer_config = config_util.get_image_resizer_config(model_config)
self.assertEqual(image_resizer_config.fixed_shape_resizer.height, 100)
self.assertEqual(image_resizer_config.fixed_shape_resizer.width, 300)
示例2: test_get_image_resizer_config
# 需要导入模块: from object_detection.utils import config_util [as 别名]
# 或者: from object_detection.utils.config_util import get_image_resizer_config [as 别名]
def test_get_image_resizer_config(self):
"""Tests that number of classes can be retrieved."""
model_config = model_pb2.DetectionModel()
model_config.faster_rcnn.image_resizer.fixed_shape_resizer.height = 100
model_config.faster_rcnn.image_resizer.fixed_shape_resizer.width = 300
image_resizer_config = config_util.get_image_resizer_config(model_config)
self.assertEqual(image_resizer_config.fixed_shape_resizer.height, 100)
self.assertEqual(image_resizer_config.fixed_shape_resizer.width, 300)
示例3: create_predict_input_fn
# 需要导入模块: from object_detection.utils import config_util [as 别名]
# 或者: from object_detection.utils.config_util import get_image_resizer_config [as 别名]
def create_predict_input_fn(model_config, predict_input_config):
"""Creates a predict `input` function for `Estimator`.
Args:
model_config: A model_pb2.DetectionModel.
predict_input_config: An input_reader_pb2.InputReader.
Returns:
`input_fn` for `Estimator` in PREDICT mode.
"""
def _predict_input_fn(params=None):
"""Decodes serialized tf.Examples and returns `ServingInputReceiver`.
Args:
params: Parameter dictionary passed from the estimator.
Returns:
`ServingInputReceiver`.
"""
del params
example = tf.placeholder(dtype=tf.string, shape=[], name='tf_example')
num_classes = config_util.get_number_of_classes(model_config)
model = model_builder.build(model_config, is_training=False)
image_resizer_config = config_util.get_image_resizer_config(model_config)
image_resizer_fn = image_resizer_builder.build(image_resizer_config)
transform_fn = functools.partial(
transform_input_data, model_preprocess_fn=model.preprocess,
image_resizer_fn=image_resizer_fn,
num_classes=num_classes,
data_augmentation_fn=None)
decoder = tf_example_decoder.TfExampleDecoder(
load_instance_masks=False,
num_additional_channels=predict_input_config.num_additional_channels)
input_dict = transform_fn(decoder.decode(example))
images = tf.to_float(input_dict[fields.InputDataFields.image])
images = tf.expand_dims(images, axis=0)
true_image_shape = tf.expand_dims(
input_dict[fields.InputDataFields.true_image_shape], axis=0)
return tf.estimator.export.ServingInputReceiver(
features={
fields.InputDataFields.image: images,
fields.InputDataFields.true_image_shape: true_image_shape},
receiver_tensors={SERVING_FED_EXAMPLE_KEY: example})
return _predict_input_fn
示例4: create_predict_input_fn
# 需要导入模块: from object_detection.utils import config_util [as 别名]
# 或者: from object_detection.utils.config_util import get_image_resizer_config [as 别名]
def create_predict_input_fn(model_config):
"""Creates a predict `input` function for `Estimator`.
Args:
model_config: A model_pb2.DetectionModel.
Returns:
`input_fn` for `Estimator` in PREDICT mode.
"""
def _predict_input_fn(params=None):
"""Decodes serialized tf.Examples and returns `ServingInputReceiver`.
Args:
params: Parameter dictionary passed from the estimator.
Returns:
`ServingInputReceiver`.
"""
del params
example = tf.placeholder(dtype=tf.string, shape=[], name='input_feature')
num_classes = config_util.get_number_of_classes(model_config)
model = model_builder.build(model_config, is_training=False)
image_resizer_config = config_util.get_image_resizer_config(model_config)
image_resizer_fn = image_resizer_builder.build(image_resizer_config)
transform_fn = functools.partial(
transform_input_data, model_preprocess_fn=model.preprocess,
image_resizer_fn=image_resizer_fn,
num_classes=num_classes,
data_augmentation_fn=None)
decoder = tf_example_decoder.TfExampleDecoder(load_instance_masks=False)
input_dict = transform_fn(decoder.decode(example))
images = tf.to_float(input_dict[fields.InputDataFields.image])
images = tf.expand_dims(images, axis=0)
true_image_shape = tf.expand_dims(
input_dict[fields.InputDataFields.true_image_shape], axis=0)
return tf.estimator.export.ServingInputReceiver(
features={
fields.InputDataFields.image: images,
fields.InputDataFields.true_image_shape: true_image_shape},
receiver_tensors={SERVING_FED_EXAMPLE_KEY: example})
return _predict_input_fn
示例5: create_predict_input_fn
# 需要导入模块: from object_detection.utils import config_util [as 别名]
# 或者: from object_detection.utils.config_util import get_image_resizer_config [as 别名]
def create_predict_input_fn(model_config):
"""Creates a predict `input` function for `Estimator`.
Args:
model_config: A model_pb2.DetectionModel.
Returns:
`input_fn` for `Estimator` in PREDICT mode.
"""
def _predict_input_fn(params=None):
"""Decodes serialized tf.Examples and returns `ServingInputReceiver`.
Args:
params: Parameter dictionary passed from the estimator.
Returns:
`ServingInputReceiver`.
"""
del params
example = tf.placeholder(dtype=tf.string, shape=[], name='input_feature')
num_classes = config_util.get_number_of_classes(model_config)
model = model_builder.build(model_config, is_training=False)
image_resizer_config = config_util.get_image_resizer_config(model_config)
image_resizer_fn = image_resizer_builder.build(image_resizer_config)
transform_fn = functools.partial(
transform_input_data, model_preprocess_fn=model.preprocess,
image_resizer_fn=image_resizer_fn,
num_classes=num_classes,
data_augmentation_fn=None)
decoder = tf_example_decoder.TfExampleDecoder(load_instance_masks=False)
input_dict = transform_fn(decoder.decode(example))
images = tf.to_float(input_dict[fields.InputDataFields.image])
images = tf.expand_dims(images, axis=0)
return tf.estimator.export.ServingInputReceiver(
features={fields.InputDataFields.image: images},
receiver_tensors={SERVING_FED_EXAMPLE_KEY: example})
return _predict_input_fn
示例6: create_predict_input_fn
# 需要导入模块: from object_detection.utils import config_util [as 别名]
# 或者: from object_detection.utils.config_util import get_image_resizer_config [as 别名]
def create_predict_input_fn(model_config):
"""Creates a predict `input` function for `Estimator`.
Args:
model_config: A model_pb2.DetectionModel.
Returns:
`input_fn` for `Estimator` in PREDICT mode.
"""
def _predict_input_fn(params=None):
"""Decodes serialized tf.Examples and returns `ServingInputReceiver`.
Args:
params: Parameter dictionary passed from the estimator.
Returns:
`ServingInputReceiver`.
"""
del params
example = tf.placeholder(
dtype=tf.string,
shape=[],
name='input_feature')
num_classes = config_util.get_number_of_classes(model_config)
model = model_builder.build(model_config, is_training=False)
image_resizer_config = config_util.get_image_resizer_config(
model_config)
image_resizer_fn = image_resizer_builder.build(image_resizer_config)
transform_fn = functools.partial(
transform_input_data, model_preprocess_fn=model.preprocess,
image_resizer_fn=image_resizer_fn,
num_classes=num_classes,
data_augmentation_fn=None)
decoder = tf_example_decoder.TfExampleDecoder(
load_instance_masks=False)
input_dict = transform_fn(decoder.decode(example))
images = tf.to_float(input_dict[fields.InputDataFields.image])
images = tf.expand_dims(images, axis=0)
return tf.estimator.export.ServingInputReceiver(
features={fields.InputDataFields.image: images},
receiver_tensors={SERVING_FED_EXAMPLE_KEY: example})
return _predict_input_fn
示例7: create_predict_input_fn
# 需要导入模块: from object_detection.utils import config_util [as 别名]
# 或者: from object_detection.utils.config_util import get_image_resizer_config [as 别名]
def create_predict_input_fn(model_config, predict_input_config):
"""Creates a predict `input` function for `Estimator`.
Args:
model_config: A model_pb2.DetectionModel.
predict_input_config: An input_reader_pb2.InputReader.
Returns:
`input_fn` for `Estimator` in PREDICT mode.
"""
def _predict_input_fn(params=None):
"""Decodes serialized tf.Examples and returns `ServingInputReceiver`.
Args:
params: Parameter dictionary passed from the estimator.
Returns:
`ServingInputReceiver`.
"""
del params
example = tf.placeholder(dtype=tf.string, shape=[], name='tf_example')
num_classes = config_util.get_number_of_classes(model_config)
model_preprocess_fn = INPUT_BUILDER_UTIL_MAP['model_build'](
model_config, is_training=False).preprocess
image_resizer_config = config_util.get_image_resizer_config(model_config)
image_resizer_fn = image_resizer_builder.build(image_resizer_config)
transform_fn = functools.partial(
transform_input_data, model_preprocess_fn=model_preprocess_fn,
image_resizer_fn=image_resizer_fn,
num_classes=num_classes,
data_augmentation_fn=None)
decoder = tf_example_decoder.TfExampleDecoder(
load_instance_masks=False,
num_additional_channels=predict_input_config.num_additional_channels)
input_dict = transform_fn(decoder.decode(example))
images = tf.cast(input_dict[fields.InputDataFields.image], dtype=tf.float32)
images = tf.expand_dims(images, axis=0)
true_image_shape = tf.expand_dims(
input_dict[fields.InputDataFields.true_image_shape], axis=0)
return tf.estimator.export.ServingInputReceiver(
features={
fields.InputDataFields.image: images,
fields.InputDataFields.true_image_shape: true_image_shape},
receiver_tensors={SERVING_FED_EXAMPLE_KEY: example})
return _predict_input_fn