本文整理汇总了Python中object_detection.utils.config_util.get_configs_from_multiple_files方法的典型用法代码示例。如果您正苦于以下问题:Python config_util.get_configs_from_multiple_files方法的具体用法?Python config_util.get_configs_from_multiple_files怎么用?Python config_util.get_configs_from_multiple_files使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类object_detection.utils.config_util
的用法示例。
在下文中一共展示了config_util.get_configs_from_multiple_files方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from object_detection.utils import config_util [as 别名]
# 或者: from object_detection.utils.config_util import get_configs_from_multiple_files [as 别名]
def main(argv):
del argv
required_flags = ['input_config_path', 'eval_config_path', 'eval_dir']
for flag_name in required_flags:
if not getattr(FLAGS, flag_name):
raise ValueError('Flag --{} is required'.format(flag_name))
configs = config_util.get_configs_from_multiple_files(
eval_input_config_path=FLAGS.input_config_path,
eval_config_path=FLAGS.eval_config_path)
eval_config = configs['eval_config']
input_config = configs['eval_input_config']
metrics = read_data_and_evaluate(input_config, eval_config)
# Save metrics
write_metrics(metrics, FLAGS.eval_dir)
示例2: get_configs_from_multiple_files
# 需要导入模块: from object_detection.utils import config_util [as 别名]
# 或者: from object_detection.utils.config_util import get_configs_from_multiple_files [as 别名]
def get_configs_from_multiple_files(model_config_path="",
train_config_path="",
train_input_config_path="",
eval_config_path="",
eval_input_config_path="",
lstm_config_path=""):
"""Reads training configuration from multiple config files.
Args:
model_config_path: Path to model_pb2.DetectionModel.
train_config_path: Path to train_pb2.TrainConfig.
train_input_config_path: Path to input_reader_pb2.InputReader.
eval_config_path: Path to eval_pb2.EvalConfig.
eval_input_config_path: Path to input_reader_pb2.InputReader.
lstm_config_path: Path to pipeline_pb2.LstmModel.
Returns:
Dictionary of configuration objects. Keys are `model`, `train_config`,
`train_input_config`, `eval_config`, `eval_input_config`, `lstm_model`.
Key/Values are returned only for valid (non-empty) strings.
"""
configs = config_util.get_configs_from_multiple_files(
model_config_path=model_config_path,
train_config_path=train_config_path,
train_input_config_path=train_input_config_path,
eval_config_path=eval_config_path,
eval_input_config_path=eval_input_config_path)
if lstm_config_path:
lstm_config = internal_pipeline_pb2.LstmModel()
with tf.gfile.GFile(lstm_config_path, "r") as f:
text_format.Merge(f.read(), lstm_config)
configs["lstm_model"] = lstm_config
return configs
示例3: main
# 需要导入模块: from object_detection.utils import config_util [as 别名]
# 或者: from object_detection.utils.config_util import get_configs_from_multiple_files [as 别名]
def main(unused_argv):
assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.'
assert FLAGS.eval_dir, '`eval_dir` is missing.'
tf.gfile.MakeDirs(FLAGS.eval_dir)
if FLAGS.pipeline_config_path:
configs = config_util.get_configs_from_pipeline_file(
FLAGS.pipeline_config_path)
tf.gfile.Copy(
FLAGS.pipeline_config_path,
os.path.join(FLAGS.eval_dir, 'pipeline.config'),
overwrite=True)
else:
configs = config_util.get_configs_from_multiple_files(
model_config_path=FLAGS.model_config_path,
eval_config_path=FLAGS.eval_config_path,
eval_input_config_path=FLAGS.input_config_path)
for name, config in [('model.config', FLAGS.model_config_path),
('eval.config', FLAGS.eval_config_path),
('input.config', FLAGS.input_config_path)]:
tf.gfile.Copy(config, os.path.join(FLAGS.eval_dir, name), overwrite=True)
model_config = configs['model']
eval_config = configs['eval_config']
input_config = configs['eval_input_config']
if FLAGS.eval_training_data:
input_config = configs['train_input_config']
model_fn = functools.partial(
model_builder.build, model_config=model_config, is_training=False)
def get_next(config):
return dataset_builder.make_initializable_iterator(
dataset_builder.build(config)).get_next()
create_input_dict_fn = functools.partial(get_next, input_config)
categories = label_map_util.create_categories_from_labelmap(
input_config.label_map_path)
if FLAGS.run_once:
eval_config.max_evals = 1
graph_rewriter_fn = None
if 'graph_rewriter_config' in configs:
graph_rewriter_fn = graph_rewriter_builder.build(
configs['graph_rewriter_config'], is_training=False)
evaluator.evaluate(
create_input_dict_fn,
model_fn,
eval_config,
categories,
FLAGS.checkpoint_dir,
FLAGS.eval_dir,
graph_hook_fn=graph_rewriter_fn)
示例4: test_get_configs_from_multiple_files
# 需要导入模块: from object_detection.utils import config_util [as 别名]
# 或者: from object_detection.utils.config_util import get_configs_from_multiple_files [as 别名]
def test_get_configs_from_multiple_files(self):
"""Tests that proto configs can be read from multiple files."""
temp_dir = self.get_temp_dir()
# Write model config file.
model_config_path = os.path.join(temp_dir, "model.config")
model = model_pb2.DetectionModel()
model.faster_rcnn.num_classes = 10
_write_config(model, model_config_path)
# Write train config file.
train_config_path = os.path.join(temp_dir, "train.config")
train_config = train_config = train_pb2.TrainConfig()
train_config.batch_size = 32
_write_config(train_config, train_config_path)
# Write train input config file.
train_input_config_path = os.path.join(temp_dir, "train_input.config")
train_input_config = input_reader_pb2.InputReader()
train_input_config.label_map_path = "path/to/label_map"
_write_config(train_input_config, train_input_config_path)
# Write eval config file.
eval_config_path = os.path.join(temp_dir, "eval.config")
eval_config = eval_pb2.EvalConfig()
eval_config.num_examples = 20
_write_config(eval_config, eval_config_path)
# Write eval input config file.
eval_input_config_path = os.path.join(temp_dir, "eval_input.config")
eval_input_config = input_reader_pb2.InputReader()
eval_input_config.label_map_path = "path/to/another/label_map"
_write_config(eval_input_config, eval_input_config_path)
configs = config_util.get_configs_from_multiple_files(
model_config_path=model_config_path,
train_config_path=train_config_path,
train_input_config_path=train_input_config_path,
eval_config_path=eval_config_path,
eval_input_config_path=eval_input_config_path)
self.assertProtoEquals(model, configs["model"])
self.assertProtoEquals(train_config, configs["train_config"])
self.assertProtoEquals(train_input_config,
configs["train_input_config"])
self.assertProtoEquals(eval_config, configs["eval_config"])
self.assertProtoEquals(eval_input_config, configs["eval_input_configs"][0])
示例5: test_get_configs_from_multiple_files
# 需要导入模块: from object_detection.utils import config_util [as 别名]
# 或者: from object_detection.utils.config_util import get_configs_from_multiple_files [as 别名]
def test_get_configs_from_multiple_files(self):
"""Tests that proto configs can be read from multiple files."""
temp_dir = self.get_temp_dir()
# Write model config file.
model_config_path = os.path.join(temp_dir, "model.config")
model = model_pb2.DetectionModel()
model.faster_rcnn.num_classes = 10
_write_config(model, model_config_path)
# Write train config file.
train_config_path = os.path.join(temp_dir, "train.config")
train_config = train_config = train_pb2.TrainConfig()
train_config.batch_size = 32
_write_config(train_config, train_config_path)
# Write train input config file.
train_input_config_path = os.path.join(temp_dir, "train_input.config")
train_input_config = input_reader_pb2.InputReader()
train_input_config.label_map_path = "path/to/label_map"
_write_config(train_input_config, train_input_config_path)
# Write eval config file.
eval_config_path = os.path.join(temp_dir, "eval.config")
eval_config = eval_pb2.EvalConfig()
eval_config.num_examples = 20
_write_config(eval_config, eval_config_path)
# Write eval input config file.
eval_input_config_path = os.path.join(temp_dir, "eval_input.config")
eval_input_config = input_reader_pb2.InputReader()
eval_input_config.label_map_path = "path/to/another/label_map"
_write_config(eval_input_config, eval_input_config_path)
configs = config_util.get_configs_from_multiple_files(
model_config_path=model_config_path,
train_config_path=train_config_path,
train_input_config_path=train_input_config_path,
eval_config_path=eval_config_path,
eval_input_config_path=eval_input_config_path)
self.assertProtoEquals(model, configs["model"])
self.assertProtoEquals(train_config, configs["train_config"])
self.assertProtoEquals(train_input_config,
configs["train_input_config"])
self.assertProtoEquals(eval_config, configs["eval_config"])
self.assertProtoEquals(eval_input_config,
configs["eval_input_config"])
示例6: main
# 需要导入模块: from object_detection.utils import config_util [as 别名]
# 或者: from object_detection.utils.config_util import get_configs_from_multiple_files [as 别名]
def main(unused_argv):
assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.'
assert FLAGS.eval_dir, '`eval_dir` is missing.'
tf.gfile.MakeDirs(FLAGS.eval_dir)
if FLAGS.pipeline_config_path:
configs = config_util.get_configs_from_pipeline_file(
FLAGS.pipeline_config_path)
tf.gfile.Copy(FLAGS.pipeline_config_path,
os.path.join(FLAGS.eval_dir, 'pipeline.config'),
overwrite=True)
else:
configs = config_util.get_configs_from_multiple_files(
model_config_path=FLAGS.model_config_path,
eval_config_path=FLAGS.eval_config_path,
eval_input_config_path=FLAGS.input_config_path)
for name, config in [('model.config', FLAGS.model_config_path),
('eval.config', FLAGS.eval_config_path),
('input.config', FLAGS.input_config_path)]:
tf.gfile.Copy(config,
os.path.join(FLAGS.eval_dir, name),
overwrite=True)
model_config = configs['model']
eval_config = configs['eval_config']
input_config = configs['eval_input_config']
if FLAGS.eval_training_data:
input_config = configs['train_input_config']
model_fn = functools.partial(
model_builder.build,
model_config=model_config,
is_training=False)
def get_next(config):
return dataset_util.make_initializable_iterator(
dataset_builder.build(config)).get_next()
create_input_dict_fn = functools.partial(get_next, input_config)
label_map = label_map_util.load_labelmap(input_config.label_map_path)
max_num_classes = max([item.id for item in label_map.item])
categories = label_map_util.convert_label_map_to_categories(
label_map, max_num_classes)
if FLAGS.run_once:
eval_config.max_evals = 1
evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories,
FLAGS.checkpoint_dir, FLAGS.eval_dir)
示例7: main
# 需要导入模块: from object_detection.utils import config_util [as 别名]
# 或者: from object_detection.utils.config_util import get_configs_from_multiple_files [as 别名]
def main(unused_argv):
assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.'
assert FLAGS.eval_dir, '`eval_dir` is missing.'
tf.gfile.MakeDirs(FLAGS.eval_dir)
if FLAGS.pipeline_config_path:
configs = config_util.get_configs_from_pipeline_file(
FLAGS.pipeline_config_path)
tf.gfile.Copy(FLAGS.pipeline_config_path,
os.path.join(FLAGS.eval_dir, 'pipeline.config'),
overwrite=True)
else:
configs = config_util.get_configs_from_multiple_files(
model_config_path=FLAGS.model_config_path,
eval_config_path=FLAGS.eval_config_path,
eval_input_config_path=FLAGS.input_config_path)
for name, config in [('model.config', FLAGS.model_config_path),
('eval.config', FLAGS.eval_config_path),
('input.config', FLAGS.input_config_path)]:
tf.gfile.Copy(config,
os.path.join(FLAGS.eval_dir, name),
overwrite=True)
model_config = configs['model']
eval_config = configs['eval_config']
input_config = configs['eval_input_config']
if FLAGS.eval_training_data:
input_config = configs['train_input_config']
model_fn = functools.partial(
model_builder.build,
model_config=model_config,
is_training=False)
def get_next(config):
return dataset_util.make_initializable_iterator(
dataset_builder.build(config)).get_next()
create_input_dict_fn = functools.partial(get_next, input_config)
label_map = label_map_util.load_labelmap(input_config.label_map_path)
max_num_classes = max([item.id for item in label_map.item])
categories = label_map_util.convert_label_map_to_categories(
label_map, max_num_classes)
if FLAGS.run_once:
eval_config.max_evals = 1
graph_rewriter_fn = None
if 'graph_rewriter_config' in configs:
graph_rewriter_fn = graph_rewriter_builder.build(
configs['graph_rewriter_config'], is_training=False)
evaluator.evaluate(
create_input_dict_fn,
model_fn,
eval_config,
categories,
FLAGS.checkpoint_dir,
FLAGS.eval_dir,
graph_hook_fn=graph_rewriter_fn)
示例8: main
# 需要导入模块: from object_detection.utils import config_util [as 别名]
# 或者: from object_detection.utils.config_util import get_configs_from_multiple_files [as 别名]
def main(unused_argv):
if (FLAGS.omp > 0):
if not os.environ.get("OMP_NUM_THREADS"):
logging.info('OMP_NUM_THREADS value= %d', FLAGS.omp)
os.environ["OMP_NUM_THREADS"] = str(FLAGS.omp)
if not os.environ.get("KMP_BLOCKTIME"):
logging.info('KMP_BLOCKTIME value= %d', FLAGS.blocktime)
os.environ["KMP_BLOCKTIME"] = str(FLAGS.blocktime)
if not os.environ.get("KMP_SETTINGS"):
os.environ["KMP_SETTINGS"] = "1"
# os.environ["KMP_AFFINITY"]= "granularity=fine,verbose,compact,1,0"
assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.'
assert FLAGS.eval_dir, '`eval_dir` is missing.'
tf.io.gfile.makedirs(FLAGS.eval_dir)
if FLAGS.pipeline_config_path:
configs = config_util.get_configs_from_pipeline_file(
FLAGS.pipeline_config_path)
tf.io.gfile.copy(FLAGS.pipeline_config_path,
os.path.join(FLAGS.eval_dir, 'pipeline.config'),
overwrite=True)
else:
configs = config_util.get_configs_from_multiple_files(
model_config_path=FLAGS.model_config_path,
eval_config_path=FLAGS.eval_config_path,
eval_input_config_path=FLAGS.input_config_path)
for name, config in [('model.config', FLAGS.model_config_path),
('eval.config', FLAGS.eval_config_path),
('input.config', FLAGS.input_config_path)]:
tf.io.gfile.copy(config,
os.path.join(FLAGS.eval_dir, name),
overwrite=True)
model_config = configs['model']
eval_config = configs['eval_config']
input_config = configs['eval_input_config']
if FLAGS.eval_training_data:
input_config = configs['train_input_config']
model_fn = functools.partial(
model_builder.build,
model_config=model_config,
is_training=False)
def get_next(config):
return tf.compat.v1.data.make_initializable_iterator(
dataset_util, dataset_builder.build(config)).get_next()
create_input_dict_fn = functools.partial(get_next, input_config)
label_map = label_map_util.load_labelmap(input_config.label_map_path)
max_num_classes = max([item.id for item in label_map.item])
categories = label_map_util.convert_label_map_to_categories(
label_map, max_num_classes)
if FLAGS.run_once:
eval_config.max_evals = 1
evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories,
FLAGS.checkpoint_dir, FLAGS.eval_dir, intra_op=FLAGS.intra_op, inter_op=FLAGS.inter_op)
示例9: main
# 需要导入模块: from object_detection.utils import config_util [as 别名]
# 或者: from object_detection.utils.config_util import get_configs_from_multiple_files [as 别名]
def main(unused_argv):
assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.'
assert FLAGS.eval_dir, '`eval_dir` is missing.'
tf.gfile.MakeDirs(FLAGS.eval_dir)
if FLAGS.pipeline_config_path:
configs = config_util.get_configs_from_pipeline_file(
FLAGS.pipeline_config_path)
tf.gfile.Copy(FLAGS.pipeline_config_path,
os.path.join(FLAGS.eval_dir, 'pipeline.config'),
overwrite=True)
else:
configs = config_util.get_configs_from_multiple_files(
model_config_path=FLAGS.model_config_path,
eval_config_path=FLAGS.eval_config_path,
eval_input_config_path=FLAGS.input_config_path)
for name, config in [('model.config', FLAGS.model_config_path),
('eval.config', FLAGS.eval_config_path),
('input.config', FLAGS.input_config_path)]:
tf.gfile.Copy(config,
os.path.join(FLAGS.eval_dir, name),
overwrite=True)
model_config = configs['model']
eval_config = configs['eval_config']
if FLAGS.eval_training_data:
input_config = configs['train_input_config']
else:
input_config = configs['eval_input_config']
model_fn = functools.partial(
model_builder.build,
model_config=model_config,
is_training=False)
create_input_dict_fn = functools.partial(
input_reader_builder.build,
input_config)
label_map = label_map_util.load_labelmap(input_config.label_map_path)
max_num_classes = max([item.id for item in label_map.item])
categories = label_map_util.convert_label_map_to_categories(
label_map, max_num_classes)
if FLAGS.run_once:
eval_config.max_evals = 1
evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories,
FLAGS.checkpoint_dir, FLAGS.eval_dir)