当前位置: 首页>>代码示例>>Python>>正文


Python losses_pb2.ClassificationLoss方法代码示例

本文整理汇总了Python中object_detection.protos.losses_pb2.ClassificationLoss方法的典型用法代码示例。如果您正苦于以下问题:Python losses_pb2.ClassificationLoss方法的具体用法?Python losses_pb2.ClassificationLoss怎么用?Python losses_pb2.ClassificationLoss使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.protos.losses_pb2的用法示例。


在下文中一共展示了losses_pb2.ClassificationLoss方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _build_classification_loss

# 需要导入模块: from object_detection.protos import losses_pb2 [as 别名]
# 或者: from object_detection.protos.losses_pb2 import ClassificationLoss [as 别名]
def _build_classification_loss(loss_config):
  """Builds a classification loss based on the loss config.

  Args:
    loss_config: A losses_pb2.ClassificationLoss object.

  Returns:
    Loss based on the config.

  Raises:
    ValueError: On invalid loss_config.
  """
  if not isinstance(loss_config, losses_pb2.ClassificationLoss):
    raise ValueError('loss_config not of type losses_pb2.ClassificationLoss.')

  loss_type = loss_config.WhichOneof('classification_loss')

  if loss_type == 'weighted_sigmoid':
    config = loss_config.weighted_sigmoid
    return losses.WeightedSigmoidClassificationLoss(
        anchorwise_output=config.anchorwise_output)

  if loss_type == 'weighted_softmax':
    config = loss_config.weighted_softmax
    return losses.WeightedSoftmaxClassificationLoss(
        anchorwise_output=config.anchorwise_output)

  if loss_type == 'bootstrapped_sigmoid':
    config = loss_config.bootstrapped_sigmoid
    return losses.BootstrappedSigmoidClassificationLoss(
        alpha=config.alpha,
        bootstrap_type=('hard' if config.hard_bootstrap else 'soft'),
        anchorwise_output=config.anchorwise_output)

  raise ValueError('Empty loss config.') 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:37,代码来源:losses_builder.py

示例2: build_faster_rcnn_classification_loss

# 需要导入模块: from object_detection.protos import losses_pb2 [as 别名]
# 或者: from object_detection.protos.losses_pb2 import ClassificationLoss [as 别名]
def build_faster_rcnn_classification_loss(loss_config):
  """Builds a classification loss for Faster RCNN based on the loss config.

  Args:
    loss_config: A losses_pb2.ClassificationLoss object.

  Returns:
    Loss based on the config.

  Raises:
    ValueError: On invalid loss_config.
  """
  if not isinstance(loss_config, losses_pb2.ClassificationLoss):
    raise ValueError('loss_config not of type losses_pb2.ClassificationLoss.')

  loss_type = loss_config.WhichOneof('classification_loss')

  if loss_type == 'weighted_sigmoid':
    return losses.WeightedSigmoidClassificationLoss()
  if loss_type == 'weighted_softmax':
    config = loss_config.weighted_softmax
    return losses.WeightedSoftmaxClassificationLoss(
        logit_scale=config.logit_scale)
  if loss_type == 'weighted_logits_softmax':
    config = loss_config.weighted_logits_softmax
    return losses.WeightedSoftmaxClassificationAgainstLogitsLoss(
        logit_scale=config.logit_scale)
  if loss_type == 'weighted_sigmoid_focal':
    config = loss_config.weighted_sigmoid_focal
    alpha = None
    if config.HasField('alpha'):
      alpha = config.alpha
    return losses.SigmoidFocalClassificationLoss(
        gamma=config.gamma,
        alpha=alpha)

  # By default, Faster RCNN second stage classifier uses Softmax loss
  # with anchor-wise outputs.
  config = loss_config.weighted_softmax
  return losses.WeightedSoftmaxClassificationLoss(
      logit_scale=config.logit_scale) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:43,代码来源:losses_builder.py

示例3: test_build_sigmoid_loss

# 需要导入模块: from object_detection.protos import losses_pb2 [as 别名]
# 或者: from object_detection.protos.losses_pb2 import ClassificationLoss [as 别名]
def test_build_sigmoid_loss(self):
    losses_text_proto = """
      weighted_sigmoid {
      }
    """
    losses_proto = losses_pb2.ClassificationLoss()
    text_format.Merge(losses_text_proto, losses_proto)
    classification_loss = losses_builder.build_faster_rcnn_classification_loss(
        losses_proto)
    self.assertTrue(isinstance(classification_loss,
                               losses.WeightedSigmoidClassificationLoss)) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:13,代码来源:losses_builder_test.py

示例4: test_build_softmax_loss

# 需要导入模块: from object_detection.protos import losses_pb2 [as 别名]
# 或者: from object_detection.protos.losses_pb2 import ClassificationLoss [as 别名]
def test_build_softmax_loss(self):
    losses_text_proto = """
      weighted_softmax {
      }
    """
    losses_proto = losses_pb2.ClassificationLoss()
    text_format.Merge(losses_text_proto, losses_proto)
    classification_loss = losses_builder.build_faster_rcnn_classification_loss(
        losses_proto)
    self.assertTrue(isinstance(classification_loss,
                               losses.WeightedSoftmaxClassificationLoss)) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:13,代码来源:losses_builder_test.py

示例5: test_build_logits_softmax_loss

# 需要导入模块: from object_detection.protos import losses_pb2 [as 别名]
# 或者: from object_detection.protos.losses_pb2 import ClassificationLoss [as 别名]
def test_build_logits_softmax_loss(self):
    losses_text_proto = """
      weighted_logits_softmax {
      }
    """
    losses_proto = losses_pb2.ClassificationLoss()
    text_format.Merge(losses_text_proto, losses_proto)
    classification_loss = losses_builder.build_faster_rcnn_classification_loss(
        losses_proto)
    self.assertTrue(
        isinstance(classification_loss,
                   losses.WeightedSoftmaxClassificationAgainstLogitsLoss)) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:14,代码来源:losses_builder_test.py

示例6: test_build_softmax_loss_by_default

# 需要导入模块: from object_detection.protos import losses_pb2 [as 别名]
# 或者: from object_detection.protos.losses_pb2 import ClassificationLoss [as 别名]
def test_build_softmax_loss_by_default(self):
    losses_text_proto = """
    """
    losses_proto = losses_pb2.ClassificationLoss()
    text_format.Merge(losses_text_proto, losses_proto)
    classification_loss = losses_builder.build_faster_rcnn_classification_loss(
        losses_proto)
    self.assertTrue(isinstance(classification_loss,
                               losses.WeightedSoftmaxClassificationLoss)) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:11,代码来源:losses_builder_test.py

示例7: build_faster_rcnn_classification_loss

# 需要导入模块: from object_detection.protos import losses_pb2 [as 别名]
# 或者: from object_detection.protos.losses_pb2 import ClassificationLoss [as 别名]
def build_faster_rcnn_classification_loss(loss_config):
  """Builds a classification loss for Faster RCNN based on the loss config.

  Args:
    loss_config: A losses_pb2.ClassificationLoss object.

  Returns:
    Loss based on the config.

  Raises:
    ValueError: On invalid loss_config.
  """
  if not isinstance(loss_config, losses_pb2.ClassificationLoss):
    raise ValueError('loss_config not of type losses_pb2.ClassificationLoss.')

  loss_type = loss_config.WhichOneof('classification_loss')

  if loss_type == 'weighted_sigmoid':
    return losses.WeightedSigmoidClassificationLoss()
  if loss_type == 'weighted_softmax':
    config = loss_config.weighted_softmax
    return losses.WeightedSoftmaxClassificationLoss(
        logit_scale=config.logit_scale)

  # By default, Faster RCNN second stage classifier uses Softmax loss
  # with anchor-wise outputs.
  config = loss_config.weighted_softmax
  return losses.WeightedSoftmaxClassificationLoss(
      logit_scale=config.logit_scale) 
开发者ID:cagbal,项目名称:ros_people_object_detection_tensorflow,代码行数:31,代码来源:losses_builder.py

示例8: _build_classification_loss

# 需要导入模块: from object_detection.protos import losses_pb2 [as 别名]
# 或者: from object_detection.protos.losses_pb2 import ClassificationLoss [as 别名]
def _build_classification_loss(loss_config):
  """Builds a classification loss based on the loss config.

  Args:
    loss_config: A losses_pb2.ClassificationLoss object.

  Returns:
    Loss based on the config.

  Raises:
    ValueError: On invalid loss_config.
  """
  if not isinstance(loss_config, losses_pb2.ClassificationLoss):
    raise ValueError('loss_config not of type losses_pb2.ClassificationLoss.')

  loss_type = loss_config.WhichOneof('classification_loss')

  if loss_type == 'weighted_sigmoid':
    return losses.WeightedSigmoidClassificationLoss()

  if loss_type == 'weighted_sigmoid_focal':
    config = loss_config.weighted_sigmoid_focal
    alpha = None
    if config.HasField('alpha'):
      alpha = config.alpha
    return losses.SigmoidFocalClassificationLoss(
        gamma=config.gamma,
        alpha=alpha)

  if loss_type == 'weighted_softmax':
    config = loss_config.weighted_softmax
    return losses.WeightedSoftmaxClassificationLoss(
        logit_scale=config.logit_scale)

  if loss_type == 'bootstrapped_sigmoid':
    config = loss_config.bootstrapped_sigmoid
    return losses.BootstrappedSigmoidClassificationLoss(
        alpha=config.alpha,
        bootstrap_type=('hard' if config.hard_bootstrap else 'soft'))

  raise ValueError('Empty loss config.') 
开发者ID:cagbal,项目名称:ros_people_object_detection_tensorflow,代码行数:43,代码来源:losses_builder.py

示例9: build_faster_rcnn_classification_loss

# 需要导入模块: from object_detection.protos import losses_pb2 [as 别名]
# 或者: from object_detection.protos.losses_pb2 import ClassificationLoss [as 别名]
def build_faster_rcnn_classification_loss(loss_config):
  """Builds a classification loss for Faster RCNN based on the loss config.

  Args:
    loss_config: A losses_pb2.ClassificationLoss object.

  Returns:
    Loss based on the config.

  Raises:
    ValueError: On invalid loss_config.
  """
  if not isinstance(loss_config, losses_pb2.ClassificationLoss):
    raise ValueError('loss_config not of type losses_pb2.ClassificationLoss.')

  loss_type = loss_config.WhichOneof('classification_loss')

  if loss_type == 'weighted_sigmoid':
    return losses.WeightedSigmoidClassificationLoss()
  if loss_type == 'weighted_softmax':
    config = loss_config.weighted_softmax
    return losses.WeightedSoftmaxClassificationLoss(
        logit_scale=config.logit_scale)
  if loss_type == 'weighted_logits_softmax':
    config = loss_config.weighted_logits_softmax
    return losses.WeightedSoftmaxClassificationAgainstLogitsLoss(
        logit_scale=config.logit_scale)

  # By default, Faster RCNN second stage classifier uses Softmax loss
  # with anchor-wise outputs.
  config = loss_config.weighted_softmax
  return losses.WeightedSoftmaxClassificationLoss(
      logit_scale=config.logit_scale) 
开发者ID:ambakick,项目名称:Person-Detection-and-Tracking,代码行数:35,代码来源:losses_builder.py

示例10: build_faster_rcnn_classification_loss

# 需要导入模块: from object_detection.protos import losses_pb2 [as 别名]
# 或者: from object_detection.protos.losses_pb2 import ClassificationLoss [as 别名]
def build_faster_rcnn_classification_loss(loss_config):
  """Builds a classification loss for Faster RCNN based on the loss config.

  Args:
    loss_config: A losses_pb2.ClassificationLoss object.

  Returns:
    Loss based on the config.

  Raises:
    ValueError: On invalid loss_config.
  """
  if not isinstance(loss_config, losses_pb2.ClassificationLoss):
    raise ValueError('loss_config not of type losses_pb2.ClassificationLoss.')

  loss_type = loss_config.WhichOneof('classification_loss')

  if loss_type == 'weighted_sigmoid':
    config = loss_config.weighted_sigmoid
    return losses.WeightedSigmoidClassificationLoss(
        anchorwise_output=config.anchorwise_output)
  if loss_type == 'weighted_softmax':
    config = loss_config.weighted_softmax
    return losses.WeightedSoftmaxClassificationLoss(
        anchorwise_output=config.anchorwise_output)

  # By default, Faster RCNN second stage classifier uses Softmax loss
  # with anchor-wise outputs.
  return losses.WeightedSoftmaxClassificationLoss(
      anchorwise_output=True) 
开发者ID:rky0930,项目名称:yolo_v2,代码行数:32,代码来源:losses_builder.py


注:本文中的object_detection.protos.losses_pb2.ClassificationLoss方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。