本文整理汇总了Python中object_detection.protos.hyperparams_pb2.Hyperparams方法的典型用法代码示例。如果您正苦于以下问题:Python hyperparams_pb2.Hyperparams方法的具体用法?Python hyperparams_pb2.Hyperparams怎么用?Python hyperparams_pb2.Hyperparams使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类object_detection.protos.hyperparams_pb2
的用法示例。
在下文中一共展示了hyperparams_pb2.Hyperparams方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _build_arg_scope_with_hyperparams
# 需要导入模块: from object_detection.protos import hyperparams_pb2 [as 别名]
# 或者: from object_detection.protos.hyperparams_pb2 import Hyperparams [as 别名]
def _build_arg_scope_with_hyperparams(self,
op_type=hyperparams_pb2.Hyperparams.FC):
hyperparams = hyperparams_pb2.Hyperparams()
hyperparams_text_proto = """
activation: NONE
regularizer {
l2_regularizer {
}
}
initializer {
truncated_normal_initializer {
}
}
"""
text_format.Merge(hyperparams_text_proto, hyperparams)
hyperparams.op = op_type
return hyperparams_builder.build(hyperparams, is_training=True)
示例2: test_get_instance_masks
# 需要导入模块: from object_detection.protos import hyperparams_pb2 [as 别名]
# 或者: from object_detection.protos.hyperparams_pb2 import Hyperparams [as 别名]
def test_get_instance_masks(self):
image_features = tf.random_uniform([2, 7, 7, 3], dtype=tf.float32)
mask_box_predictor = box_predictor.MaskRCNNBoxPredictor(
is_training=False,
num_classes=5,
fc_hyperparams=self._build_arg_scope_with_hyperparams(),
use_dropout=False,
dropout_keep_prob=0.5,
box_code_size=4,
conv_hyperparams=self._build_arg_scope_with_hyperparams(
op_type=hyperparams_pb2.Hyperparams.CONV),
predict_instance_masks=True)
box_predictions = mask_box_predictor.predict(
image_features, num_predictions_per_location=1, scope='BoxPredictor')
mask_predictions = box_predictions[box_predictor.MASK_PREDICTIONS]
self.assertListEqual([2, 1, 5, 14, 14],
mask_predictions.get_shape().as_list())
示例3: test_build_default_mask_rcnn_box_predictor
# 需要导入模块: from object_detection.protos import hyperparams_pb2 [as 别名]
# 或者: from object_detection.protos.hyperparams_pb2 import Hyperparams [as 别名]
def test_build_default_mask_rcnn_box_predictor(self):
box_predictor_proto = box_predictor_pb2.BoxPredictor()
box_predictor_proto.mask_rcnn_box_predictor.fc_hyperparams.op = (
hyperparams_pb2.Hyperparams.FC)
box_predictor = box_predictor_builder.build(
argscope_fn=mock.Mock(return_value='arg_scope'),
box_predictor_config=box_predictor_proto,
is_training=True,
num_classes=90)
self.assertFalse(box_predictor._use_dropout)
self.assertAlmostEqual(box_predictor._dropout_keep_prob, 0.5)
self.assertEqual(box_predictor.num_classes, 90)
self.assertTrue(box_predictor._is_training)
self.assertEqual(box_predictor._box_code_size, 4)
self.assertFalse(box_predictor._predict_instance_masks)
self.assertFalse(box_predictor._predict_keypoints)
示例4: test_separable_conv2d_and_conv2d_and_transpose_have_same_parameters
# 需要导入模块: from object_detection.protos import hyperparams_pb2 [as 别名]
# 或者: from object_detection.protos.hyperparams_pb2 import Hyperparams [as 别名]
def test_separable_conv2d_and_conv2d_and_transpose_have_same_parameters(self):
conv_hyperparams_text_proto = """
regularizer {
l1_regularizer {
}
}
initializer {
truncated_normal_initializer {
}
}
"""
conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
kwargs_1, kwargs_2, kwargs_3 = scope.values()
self.assertDictEqual(kwargs_1, kwargs_2)
self.assertDictEqual(kwargs_1, kwargs_3)
示例5: test_return_l1_regularized_weights
# 需要导入模块: from object_detection.protos import hyperparams_pb2 [as 别名]
# 或者: from object_detection.protos.hyperparams_pb2 import Hyperparams [as 别名]
def test_return_l1_regularized_weights(self):
conv_hyperparams_text_proto = """
regularizer {
l1_regularizer {
weight: 0.5
}
}
initializer {
truncated_normal_initializer {
}
}
"""
conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
conv_scope_arguments = scope.values()[0]
regularizer = conv_scope_arguments['weights_regularizer']
weights = np.array([1., -1, 4., 2.])
with self.test_session() as sess:
result = sess.run(regularizer(tf.constant(weights)))
self.assertAllClose(np.abs(weights).sum() * 0.5, result)
示例6: test_return_l2_regularizer_weights
# 需要导入模块: from object_detection.protos import hyperparams_pb2 [as 别名]
# 或者: from object_detection.protos.hyperparams_pb2 import Hyperparams [as 别名]
def test_return_l2_regularizer_weights(self):
conv_hyperparams_text_proto = """
regularizer {
l2_regularizer {
weight: 0.42
}
}
initializer {
truncated_normal_initializer {
}
}
"""
conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
conv_scope_arguments = scope.values()[0]
regularizer = conv_scope_arguments['weights_regularizer']
weights = np.array([1., -1, 4., 2.])
with self.test_session() as sess:
result = sess.run(regularizer(tf.constant(weights)))
self.assertAllClose(np.power(weights, 2).sum() / 2.0 * 0.42, result)
示例7: test_do_not_use_batch_norm_if_default
# 需要导入模块: from object_detection.protos import hyperparams_pb2 [as 别名]
# 或者: from object_detection.protos.hyperparams_pb2 import Hyperparams [as 别名]
def test_do_not_use_batch_norm_if_default(self):
conv_hyperparams_text_proto = """
regularizer {
l2_regularizer {
}
}
initializer {
truncated_normal_initializer {
}
}
"""
conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
conv_scope_arguments = scope.values()[0]
self.assertEqual(conv_scope_arguments['normalizer_fn'], None)
self.assertEqual(conv_scope_arguments['normalizer_params'], None)
示例8: test_use_none_activation
# 需要导入模块: from object_detection.protos import hyperparams_pb2 [as 别名]
# 或者: from object_detection.protos.hyperparams_pb2 import Hyperparams [as 别名]
def test_use_none_activation(self):
conv_hyperparams_text_proto = """
regularizer {
l2_regularizer {
}
}
initializer {
truncated_normal_initializer {
}
}
activation: NONE
"""
conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
conv_scope_arguments = scope.values()[0]
self.assertEqual(conv_scope_arguments['activation_fn'], None)
示例9: test_use_relu_activation
# 需要导入模块: from object_detection.protos import hyperparams_pb2 [as 别名]
# 或者: from object_detection.protos.hyperparams_pb2 import Hyperparams [as 别名]
def test_use_relu_activation(self):
conv_hyperparams_text_proto = """
regularizer {
l2_regularizer {
}
}
initializer {
truncated_normal_initializer {
}
}
activation: RELU
"""
conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
conv_scope_arguments = scope.values()[0]
self.assertEqual(conv_scope_arguments['activation_fn'], tf.nn.relu)
示例10: test_use_relu_6_activation
# 需要导入模块: from object_detection.protos import hyperparams_pb2 [as 别名]
# 或者: from object_detection.protos.hyperparams_pb2 import Hyperparams [as 别名]
def test_use_relu_6_activation(self):
conv_hyperparams_text_proto = """
regularizer {
l2_regularizer {
}
}
initializer {
truncated_normal_initializer {
}
}
activation: RELU_6
"""
conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
conv_scope_arguments = scope.values()[0]
self.assertEqual(conv_scope_arguments['activation_fn'], tf.nn.relu6)
示例11: test_variance_in_range_with_variance_scaling_initializer_fan_in
# 需要导入模块: from object_detection.protos import hyperparams_pb2 [as 别名]
# 或者: from object_detection.protos.hyperparams_pb2 import Hyperparams [as 别名]
def test_variance_in_range_with_variance_scaling_initializer_fan_in(self):
conv_hyperparams_text_proto = """
regularizer {
l2_regularizer {
}
}
initializer {
variance_scaling_initializer {
factor: 2.0
mode: FAN_IN
uniform: false
}
}
"""
conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
conv_scope_arguments = scope.values()[0]
initializer = conv_scope_arguments['weights_initializer']
self._assert_variance_in_range(initializer, shape=[100, 40],
variance=2. / 100.)
示例12: test_variance_in_range_with_variance_scaling_initializer_fan_avg
# 需要导入模块: from object_detection.protos import hyperparams_pb2 [as 别名]
# 或者: from object_detection.protos.hyperparams_pb2 import Hyperparams [as 别名]
def test_variance_in_range_with_variance_scaling_initializer_fan_avg(self):
conv_hyperparams_text_proto = """
regularizer {
l2_regularizer {
}
}
initializer {
variance_scaling_initializer {
factor: 2.0
mode: FAN_AVG
uniform: false
}
}
"""
conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
conv_scope_arguments = scope.values()[0]
initializer = conv_scope_arguments['weights_initializer']
self._assert_variance_in_range(initializer, shape=[100, 40],
variance=4. / (100. + 40.))
示例13: test_variance_in_range_with_variance_scaling_initializer_uniform
# 需要导入模块: from object_detection.protos import hyperparams_pb2 [as 别名]
# 或者: from object_detection.protos.hyperparams_pb2 import Hyperparams [as 别名]
def test_variance_in_range_with_variance_scaling_initializer_uniform(self):
conv_hyperparams_text_proto = """
regularizer {
l2_regularizer {
}
}
initializer {
variance_scaling_initializer {
factor: 2.0
mode: FAN_IN
uniform: true
}
}
"""
conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
conv_scope_arguments = scope.values()[0]
initializer = conv_scope_arguments['weights_initializer']
self._assert_variance_in_range(initializer, shape=[100, 40],
variance=2. / 100.)
示例14: test_variance_in_range_with_truncated_normal_initializer
# 需要导入模块: from object_detection.protos import hyperparams_pb2 [as 别名]
# 或者: from object_detection.protos.hyperparams_pb2 import Hyperparams [as 别名]
def test_variance_in_range_with_truncated_normal_initializer(self):
conv_hyperparams_text_proto = """
regularizer {
l2_regularizer {
}
}
initializer {
truncated_normal_initializer {
mean: 0.0
stddev: 0.8
}
}
"""
conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
conv_scope_arguments = scope.values()[0]
initializer = conv_scope_arguments['weights_initializer']
self._assert_variance_in_range(initializer, shape=[100, 40],
variance=0.49, tol=1e-1)
示例15: _build_activation_fn
# 需要导入模块: from object_detection.protos import hyperparams_pb2 [as 别名]
# 或者: from object_detection.protos.hyperparams_pb2 import Hyperparams [as 别名]
def _build_activation_fn(activation_fn):
"""Builds a callable activation from config.
Args:
activation_fn: hyperparams_pb2.Hyperparams.activation
Returns:
Callable activation function.
Raises:
ValueError: On unknown activation function.
"""
if activation_fn == hyperparams_pb2.Hyperparams.NONE:
return None
if activation_fn == hyperparams_pb2.Hyperparams.RELU:
return tf.nn.relu
if activation_fn == hyperparams_pb2.Hyperparams.RELU_6:
return tf.nn.relu6
raise ValueError('Unknown activation function: {}'.format(activation_fn))