本文整理汇总了Python中object_detection.protos.graph_rewriter_pb2.GraphRewriter方法的典型用法代码示例。如果您正苦于以下问题:Python graph_rewriter_pb2.GraphRewriter方法的具体用法?Python graph_rewriter_pb2.GraphRewriter怎么用?Python graph_rewriter_pb2.GraphRewriter使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类object_detection.protos.graph_rewriter_pb2
的用法示例。
在下文中一共展示了graph_rewriter_pb2.GraphRewriter方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _save_checkpoint_from_mock_model
# 需要导入模块: from object_detection.protos import graph_rewriter_pb2 [as 别名]
# 或者: from object_detection.protos.graph_rewriter_pb2 import GraphRewriter [as 别名]
def _save_checkpoint_from_mock_model(self,
checkpoint_path,
use_moving_averages,
enable_quantization=False):
g = tf.Graph()
with g.as_default():
mock_model = FakeModel()
preprocessed_inputs, true_image_shapes = mock_model.preprocess(
tf.placeholder(tf.float32, shape=[None, None, None, 3]))
predictions = mock_model.predict(preprocessed_inputs, true_image_shapes)
mock_model.postprocess(predictions, true_image_shapes)
if use_moving_averages:
tf.train.ExponentialMovingAverage(0.0).apply()
tf.train.get_or_create_global_step()
if enable_quantization:
graph_rewriter_config = graph_rewriter_pb2.GraphRewriter()
graph_rewriter_config.quantization.delay = 500000
graph_rewriter_fn = graph_rewriter_builder.build(
graph_rewriter_config, is_training=False)
graph_rewriter_fn()
saver = tf.train.Saver()
init = tf.global_variables_initializer()
with self.test_session() as sess:
sess.run(init)
saver.save(sess, checkpoint_path)
示例2: testQuantizationBuilderSetsUpCorrectTrainArguments
# 需要导入模块: from object_detection.protos import graph_rewriter_pb2 [as 别名]
# 或者: from object_detection.protos.graph_rewriter_pb2 import GraphRewriter [as 别名]
def testQuantizationBuilderSetsUpCorrectTrainArguments(self):
with mock.patch.object(
tf.contrib.quantize, 'create_training_graph') as mock_quant_fn:
with mock.patch.object(tf.contrib.layers,
'summarize_collection') as mock_summarize_col:
graph_rewriter_proto = graph_rewriter_pb2.GraphRewriter()
graph_rewriter_proto.quantization.delay = 10
graph_rewriter_proto.quantization.weight_bits = 8
graph_rewriter_proto.quantization.activation_bits = 8
graph_rewrite_fn = graph_rewriter_builder.build(
graph_rewriter_proto, is_training=True)
graph_rewrite_fn()
_, kwargs = mock_quant_fn.call_args
self.assertEqual(kwargs['input_graph'], tf.get_default_graph())
self.assertEqual(kwargs['quant_delay'], 10)
mock_summarize_col.assert_called_with('quant_vars')
示例3: _save_checkpoint_from_mock_model
# 需要导入模块: from object_detection.protos import graph_rewriter_pb2 [as 别名]
# 或者: from object_detection.protos.graph_rewriter_pb2 import GraphRewriter [as 别名]
def _save_checkpoint_from_mock_model(self,
checkpoint_path,
use_moving_averages,
quantize=False,
num_channels=3):
g = tf.Graph()
with g.as_default():
mock_model = FakeModel()
inputs = tf.placeholder(tf.float32, shape=[1, 10, 10, num_channels])
mock_model.predict(inputs, true_image_shapes=None)
if use_moving_averages:
tf.train.ExponentialMovingAverage(0.0).apply()
tf.train.get_or_create_global_step()
if quantize:
graph_rewriter_config = graph_rewriter_pb2.GraphRewriter()
graph_rewriter_config.quantization.delay = 500000
graph_rewriter_fn = graph_rewriter_builder.build(
graph_rewriter_config, is_training=False)
graph_rewriter_fn()
saver = tf.train.Saver()
init = tf.global_variables_initializer()
with self.test_session() as sess:
sess.run(init)
saver.save(sess, checkpoint_path)
示例4: testQuantizationBuilderSetsUpCorrectTrainArguments
# 需要导入模块: from object_detection.protos import graph_rewriter_pb2 [as 别名]
# 或者: from object_detection.protos.graph_rewriter_pb2 import GraphRewriter [as 别名]
def testQuantizationBuilderSetsUpCorrectTrainArguments(self):
with mock.patch.object(
tf.contrib.quantize,
'experimental_create_training_graph') as mock_quant_fn:
with mock.patch.object(tf.contrib.layers,
'summarize_collection') as mock_summarize_col:
graph_rewriter_proto = graph_rewriter_pb2.GraphRewriter()
graph_rewriter_proto.quantization.delay = 10
graph_rewriter_proto.quantization.weight_bits = 8
graph_rewriter_proto.quantization.activation_bits = 8
graph_rewrite_fn = graph_rewriter_builder.build(
graph_rewriter_proto, is_training=True)
graph_rewrite_fn()
_, kwargs = mock_quant_fn.call_args
self.assertEqual(kwargs['input_graph'], tf.get_default_graph())
self.assertEqual(kwargs['quant_delay'], 10)
mock_summarize_col.assert_called_with('quant_vars')
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:19,代码来源:graph_rewriter_builder_test.py
示例5: test_rewrite_nn_resize_op_quantized_odd_size
# 需要导入模块: from object_detection.protos import graph_rewriter_pb2 [as 别名]
# 或者: from object_detection.protos.graph_rewriter_pb2 import GraphRewriter [as 别名]
def test_rewrite_nn_resize_op_quantized_odd_size(self):
g = tf.Graph()
with g.as_default():
x = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8))
x_conv = slim.conv2d(x, 8, 1)
s = ops.nearest_neighbor_upsampling(x_conv, 2)
t = s[:, :19, :19, :]
graph_rewriter_config = graph_rewriter_pb2.GraphRewriter()
graph_rewriter_config.quantization.delay = 500000
graph_rewriter_fn = graph_rewriter_builder.build(
graph_rewriter_config, is_training=False)
graph_rewriter_fn()
exporter.rewrite_nn_resize_op(is_quantized=True)
resize_op_found = False
for op in g.get_operations():
if op.type == 'ResizeNearestNeighbor':
resize_op_found = True
self.assertEqual(op.inputs[0].op.type, 'FakeQuantWithMinMaxVars')
self.assertEqual(op.outputs[0].consumers()[0], t.op)
break
self.assertTrue(resize_op_found)
示例6: testQuantizationBuilderSetsUpCorrectTrainArguments
# 需要导入模块: from object_detection.protos import graph_rewriter_pb2 [as 别名]
# 或者: from object_detection.protos.graph_rewriter_pb2 import GraphRewriter [as 别名]
def testQuantizationBuilderSetsUpCorrectTrainArguments(self):
with mock.patch.object(
contrib_quantize,
'experimental_create_training_graph') as mock_quant_fn:
with mock.patch.object(slim,
'summarize_collection') as mock_summarize_col:
graph_rewriter_proto = graph_rewriter_pb2.GraphRewriter()
graph_rewriter_proto.quantization.delay = 10
graph_rewriter_proto.quantization.weight_bits = 8
graph_rewriter_proto.quantization.activation_bits = 8
graph_rewrite_fn = graph_rewriter_builder.build(
graph_rewriter_proto, is_training=True)
graph_rewrite_fn()
_, kwargs = mock_quant_fn.call_args
self.assertEqual(kwargs['input_graph'], tf.get_default_graph())
self.assertEqual(kwargs['quant_delay'], 10)
mock_summarize_col.assert_called_with('quant_vars')
示例7: testQuantizationBuilderSetsUpCorrectTrainArguments
# 需要导入模块: from object_detection.protos import graph_rewriter_pb2 [as 别名]
# 或者: from object_detection.protos.graph_rewriter_pb2 import GraphRewriter [as 别名]
def testQuantizationBuilderSetsUpCorrectTrainArguments(self):
with mock.patch.object(
contrib_quantize,
'experimental_create_training_graph') as mock_quant_fn:
with mock.patch.object(contrib_layers,
'summarize_collection') as mock_summarize_col:
graph_rewriter_proto = graph_rewriter_pb2.GraphRewriter()
graph_rewriter_proto.quantization.delay = 10
graph_rewriter_proto.quantization.weight_bits = 8
graph_rewriter_proto.quantization.activation_bits = 8
graph_rewrite_fn = graph_rewriter_builder.build(
graph_rewriter_proto, is_training=True)
graph_rewrite_fn()
_, kwargs = mock_quant_fn.call_args
self.assertEqual(kwargs['input_graph'], tf.get_default_graph())
self.assertEqual(kwargs['quant_delay'], 10)
mock_summarize_col.assert_called_with('quant_vars')
示例8: get_graph_rewriter_config_from_file
# 需要导入模块: from object_detection.protos import graph_rewriter_pb2 [as 别名]
# 或者: from object_detection.protos.graph_rewriter_pb2 import GraphRewriter [as 别名]
def get_graph_rewriter_config_from_file(graph_rewriter_config_file):
"""Parses config for graph rewriter.
Args:
graph_rewriter_config_file: file path to the graph rewriter config.
Returns:
graph_rewriter_pb2.GraphRewriter proto
"""
graph_rewriter_config = graph_rewriter_pb2.GraphRewriter()
with tf.gfile.GFile(graph_rewriter_config_file, "r") as f:
text_format.Merge(f.read(), graph_rewriter_config)
return graph_rewriter_config
示例9: test_rewrite_nn_resize_op_quantized
# 需要导入模块: from object_detection.protos import graph_rewriter_pb2 [as 别名]
# 或者: from object_detection.protos.graph_rewriter_pb2 import GraphRewriter [as 别名]
def test_rewrite_nn_resize_op_quantized(self):
g = tf.Graph()
with g.as_default():
x = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8))
x_conv = tf.contrib.slim.conv2d(x, 8, 1)
y = array_ops.placeholder(dtypes.float32, shape=(8, 20, 20, 8))
s = ops.nearest_neighbor_upsampling(x_conv, 2)
t = s + y
graph_rewriter_config = graph_rewriter_pb2.GraphRewriter()
graph_rewriter_config.quantization.delay = 500000
graph_rewriter_fn = graph_rewriter_builder.build(
graph_rewriter_config, is_training=False)
graph_rewriter_fn()
exporter.rewrite_nn_resize_op(is_quantized=True)
resize_op_found = False
for op in g.get_operations():
if op.type == 'ResizeNearestNeighbor':
resize_op_found = True
self.assertEqual(op.inputs[0].op.type, 'FakeQuantWithMinMaxVars')
self.assertEqual(op.outputs[0].consumers()[0], t.op)
break
self.assertTrue(resize_op_found)
示例10: testQuantizationBuilderSetsUpCorrectEvalArguments
# 需要导入模块: from object_detection.protos import graph_rewriter_pb2 [as 别名]
# 或者: from object_detection.protos.graph_rewriter_pb2 import GraphRewriter [as 别名]
def testQuantizationBuilderSetsUpCorrectEvalArguments(self):
with mock.patch.object(tf.contrib.quantize,
'create_eval_graph') as mock_quant_fn:
with mock.patch.object(tf.contrib.layers,
'summarize_collection') as mock_summarize_col:
graph_rewriter_proto = graph_rewriter_pb2.GraphRewriter()
graph_rewriter_proto.quantization.delay = 10
graph_rewrite_fn = graph_rewriter_builder.build(
graph_rewriter_proto, is_training=False)
graph_rewrite_fn()
_, kwargs = mock_quant_fn.call_args
self.assertEqual(kwargs['input_graph'], tf.get_default_graph())
mock_summarize_col.assert_called_with('quant_vars')
示例11: testQuantizationBuilderSetsUpCorrectEvalArguments
# 需要导入模块: from object_detection.protos import graph_rewriter_pb2 [as 别名]
# 或者: from object_detection.protos.graph_rewriter_pb2 import GraphRewriter [as 别名]
def testQuantizationBuilderSetsUpCorrectEvalArguments(self):
with mock.patch.object(tf.contrib.quantize,
'experimental_create_eval_graph') as mock_quant_fn:
with mock.patch.object(tf.contrib.layers,
'summarize_collection') as mock_summarize_col:
graph_rewriter_proto = graph_rewriter_pb2.GraphRewriter()
graph_rewriter_proto.quantization.delay = 10
graph_rewrite_fn = graph_rewriter_builder.build(
graph_rewriter_proto, is_training=False)
graph_rewrite_fn()
_, kwargs = mock_quant_fn.call_args
self.assertEqual(kwargs['input_graph'], tf.get_default_graph())
mock_summarize_col.assert_called_with('quant_vars')
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:15,代码来源:graph_rewriter_builder_test.py