当前位置: 首页>>代码示例>>Python>>正文


Python ssd_resnet_v1_fpn_feature_extractor.SSDResnet50V1FpnFeatureExtractor方法代码示例

本文整理汇总了Python中object_detection.models.ssd_resnet_v1_fpn_feature_extractor.SSDResnet50V1FpnFeatureExtractor方法的典型用法代码示例。如果您正苦于以下问题:Python ssd_resnet_v1_fpn_feature_extractor.SSDResnet50V1FpnFeatureExtractor方法的具体用法?Python ssd_resnet_v1_fpn_feature_extractor.SSDResnet50V1FpnFeatureExtractor怎么用?Python ssd_resnet_v1_fpn_feature_extractor.SSDResnet50V1FpnFeatureExtractor使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.models.ssd_resnet_v1_fpn_feature_extractor的用法示例。


在下文中一共展示了ssd_resnet_v1_fpn_feature_extractor.SSDResnet50V1FpnFeatureExtractor方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _create_feature_extractor

# 需要导入模块: from object_detection.models import ssd_resnet_v1_fpn_feature_extractor [as 别名]
# 或者: from object_detection.models.ssd_resnet_v1_fpn_feature_extractor import SSDResnet50V1FpnFeatureExtractor [as 别名]
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple,
                                use_explicit_padding=False, min_depth=32,
                                use_keras=False):
    is_training = True
    if use_keras:
      return (ssd_resnet_v1_fpn_keras_feature_extractor.
              SSDResNet50V1FpnKerasFeatureExtractor(
                  is_training=is_training,
                  depth_multiplier=depth_multiplier,
                  min_depth=min_depth,
                  pad_to_multiple=pad_to_multiple,
                  conv_hyperparams=self._build_conv_hyperparams(
                      add_batch_norm=False),
                  freeze_batchnorm=False,
                  inplace_batchnorm_update=False,
                  name='ResNet50V1_FPN'))
    else:
      return (
          ssd_resnet_v1_fpn_feature_extractor.SSDResnet50V1FpnFeatureExtractor(
              is_training, depth_multiplier, min_depth, pad_to_multiple,
              self.conv_hyperparams_fn,
              use_explicit_padding=use_explicit_padding)) 
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:24,代码来源:ssd_resnet_v1_fpn_feature_extractor_test.py

示例2: _create_feature_extractor

# 需要导入模块: from object_detection.models import ssd_resnet_v1_fpn_feature_extractor [as 别名]
# 或者: from object_detection.models.ssd_resnet_v1_fpn_feature_extractor import SSDResnet50V1FpnFeatureExtractor [as 别名]
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple,
                                use_explicit_padding=False):
    min_depth = 32
    is_training = True
    return ssd_resnet_v1_fpn_feature_extractor.SSDResnet50V1FpnFeatureExtractor(
        is_training, depth_multiplier, min_depth, pad_to_multiple,
        self.conv_hyperparams_fn, use_explicit_padding=use_explicit_padding) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:9,代码来源:ssd_resnet_v1_fpn_feature_extractor_test.py

示例3: _create_feature_extractor

# 需要导入模块: from object_detection.models import ssd_resnet_v1_fpn_feature_extractor [as 别名]
# 或者: from object_detection.models.ssd_resnet_v1_fpn_feature_extractor import SSDResnet50V1FpnFeatureExtractor [as 别名]
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple,
                                use_explicit_padding=False):
    min_depth = 32
    conv_hyperparams = {}
    batch_norm_trainable = True
    is_training = True
    return ssd_resnet_v1_fpn_feature_extractor.SSDResnet50V1FpnFeatureExtractor(
        is_training, depth_multiplier, min_depth, pad_to_multiple,
        conv_hyperparams, batch_norm_trainable,
        use_explicit_padding=use_explicit_padding) 
开发者ID:cagbal,项目名称:ros_people_object_detection_tensorflow,代码行数:12,代码来源:ssd_resnet_v1_fpn_feature_extractor_test.py

示例4: _create_feature_extractor

# 需要导入模块: from object_detection.models import ssd_resnet_v1_fpn_feature_extractor [as 别名]
# 或者: from object_detection.models.ssd_resnet_v1_fpn_feature_extractor import SSDResnet50V1FpnFeatureExtractor [as 别名]
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple):
    min_depth = 32
    conv_hyperparams = {}
    batch_norm_trainable = True
    is_training = True
    return ssd_resnet_v1_fpn_feature_extractor.SSDResnet50V1FpnFeatureExtractor(
        is_training, depth_multiplier, min_depth, pad_to_multiple,
        conv_hyperparams, batch_norm_trainable) 
开发者ID:ShreyAmbesh,项目名称:Traffic-Rule-Violation-Detection-System,代码行数:10,代码来源:ssd_resnet_v1_fpn_feature_extractor_test.py

示例5: _create_feature_extractor

# 需要导入模块: from object_detection.models import ssd_resnet_v1_fpn_feature_extractor [as 别名]
# 或者: from object_detection.models.ssd_resnet_v1_fpn_feature_extractor import SSDResnet50V1FpnFeatureExtractor [as 别名]
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple,
                                use_explicit_padding=False, min_depth=32,
                                use_keras=False):
    is_training = True
    return (
        ssd_resnet_v1_fpn_feature_extractor.SSDResnet50V1FpnFeatureExtractor(
            is_training, depth_multiplier, min_depth, pad_to_multiple,
            self.conv_hyperparams_fn,
            use_explicit_padding=use_explicit_padding)) 
开发者ID:tensorflow,项目名称:models,代码行数:11,代码来源:ssd_resnet_v1_fpn_feature_extractor_tf1_test.py


注:本文中的object_detection.models.ssd_resnet_v1_fpn_feature_extractor.SSDResnet50V1FpnFeatureExtractor方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。