当前位置: 首页>>代码示例>>Python>>正文


Python ssd_mobilenet_v1_feature_extractor.SSDMobileNetV1FeatureExtractor方法代码示例

本文整理汇总了Python中object_detection.models.ssd_mobilenet_v1_feature_extractor.SSDMobileNetV1FeatureExtractor方法的典型用法代码示例。如果您正苦于以下问题:Python ssd_mobilenet_v1_feature_extractor.SSDMobileNetV1FeatureExtractor方法的具体用法?Python ssd_mobilenet_v1_feature_extractor.SSDMobileNetV1FeatureExtractor怎么用?Python ssd_mobilenet_v1_feature_extractor.SSDMobileNetV1FeatureExtractor使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.models.ssd_mobilenet_v1_feature_extractor的用法示例。


在下文中一共展示了ssd_mobilenet_v1_feature_extractor.SSDMobileNetV1FeatureExtractor方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _create_feature_extractor

# 需要导入模块: from object_detection.models import ssd_mobilenet_v1_feature_extractor [as 别名]
# 或者: from object_detection.models.ssd_mobilenet_v1_feature_extractor import SSDMobileNetV1FeatureExtractor [as 别名]
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple,
                                is_training=True, use_explicit_padding=False):
    """Constructs a new feature extractor.

    Args:
      depth_multiplier: float depth multiplier for feature extractor
      pad_to_multiple: the nearest multiple to zero pad the input height and
        width dimensions to.
      is_training: whether the network is in training mode.
      use_explicit_padding: Use 'VALID' padding for convolutions, but prepad
        inputs so that the output dimensions are the same as if 'SAME' padding
        were used.
    Returns:
      an ssd_meta_arch.SSDFeatureExtractor object.
    """
    min_depth = 32
    return ssd_mobilenet_v1_feature_extractor.SSDMobileNetV1FeatureExtractor(
        is_training, depth_multiplier, min_depth, pad_to_multiple,
        self.conv_hyperparams_fn,
        use_explicit_padding=use_explicit_padding) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:22,代码来源:ssd_mobilenet_v1_feature_extractor_test.py

示例2: _create_feature_extractor

# 需要导入模块: from object_detection.models import ssd_mobilenet_v1_feature_extractor [as 别名]
# 或者: from object_detection.models.ssd_mobilenet_v1_feature_extractor import SSDMobileNetV1FeatureExtractor [as 别名]
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple,
                                is_training=True, batch_norm_trainable=True,
                                use_explicit_padding=False):
    """Constructs a new feature extractor.

    Args:
      depth_multiplier: float depth multiplier for feature extractor
      pad_to_multiple: the nearest multiple to zero pad the input height and
        width dimensions to.
      is_training: whether the network is in training mode.
      batch_norm_trainable: Whether to update batch norm parameters during
        training or not.
      use_explicit_padding: Use 'VALID' padding for convolutions, but prepad
        inputs so that the output dimensions are the same as if 'SAME' padding
        were used.
    Returns:
      an ssd_meta_arch.SSDFeatureExtractor object.
    """
    min_depth = 32
    with slim.arg_scope([slim.conv2d], normalizer_fn=slim.batch_norm) as sc:
      conv_hyperparams = sc
    return ssd_mobilenet_v1_feature_extractor.SSDMobileNetV1FeatureExtractor(
        is_training, depth_multiplier, min_depth, pad_to_multiple,
        conv_hyperparams, batch_norm_trainable=batch_norm_trainable,
        use_explicit_padding=use_explicit_padding) 
开发者ID:cagbal,项目名称:ros_people_object_detection_tensorflow,代码行数:27,代码来源:ssd_mobilenet_v1_feature_extractor_test.py

示例3: _create_feature_extractor

# 需要导入模块: from object_detection.models import ssd_mobilenet_v1_feature_extractor [as 别名]
# 或者: from object_detection.models.ssd_mobilenet_v1_feature_extractor import SSDMobileNetV1FeatureExtractor [as 别名]
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple,
                                is_training=True, batch_norm_trainable=True):
    """Constructs a new feature extractor.

    Args:
      depth_multiplier: float depth multiplier for feature extractor
      pad_to_multiple: the nearest multiple to zero pad the input height and
        width dimensions to.
      is_training: whether the network is in training mode.
      batch_norm_trainable: Whether to update batch norm parameters during
        training or not.
    Returns:
      an ssd_meta_arch.SSDFeatureExtractor object.
    """
    min_depth = 32
    with slim.arg_scope([slim.conv2d], normalizer_fn=slim.batch_norm) as sc:
      conv_hyperparams = sc
    return ssd_mobilenet_v1_feature_extractor.SSDMobileNetV1FeatureExtractor(
        is_training, depth_multiplier, min_depth, pad_to_multiple,
        conv_hyperparams, batch_norm_trainable) 
开发者ID:rky0930,项目名称:yolo_v2,代码行数:22,代码来源:ssd_mobilenet_v1_feature_extractor_test.py

示例4: _create_feature_extractor

# 需要导入模块: from object_detection.models import ssd_mobilenet_v1_feature_extractor [as 别名]
# 或者: from object_detection.models.ssd_mobilenet_v1_feature_extractor import SSDMobileNetV1FeatureExtractor [as 别名]
def _create_feature_extractor(self, depth_multiplier):
    """Constructs a new feature extractor.

    Args:
      depth_multiplier: float depth multiplier for feature extractor
    Returns:
      an ssd_meta_arch.SSDFeatureExtractor object.
    """
    min_depth = 32
    conv_hyperparams = {}
    return ssd_mobilenet_v1_feature_extractor.SSDMobileNetV1FeatureExtractor(
        depth_multiplier, min_depth, conv_hyperparams) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:14,代码来源:ssd_mobilenet_v1_feature_extractor_test.py

示例5: _create_feature_extractor

# 需要导入模块: from object_detection.models import ssd_mobilenet_v1_feature_extractor [as 别名]
# 或者: from object_detection.models.ssd_mobilenet_v1_feature_extractor import SSDMobileNetV1FeatureExtractor [as 别名]
def _create_feature_extractor(self,
                                depth_multiplier,
                                pad_to_multiple,
                                use_explicit_padding=False,
                                num_layers=6,
                                is_training=False,
                                use_keras=False):
    """Constructs a new feature extractor.

    Args:
      depth_multiplier: float depth multiplier for feature extractor
      pad_to_multiple: the nearest multiple to zero pad the input height and
        width dimensions to.
      use_explicit_padding: Use 'VALID' padding for convolutions, but prepad
        inputs so that the output dimensions are the same as if 'SAME' padding
        were used.
      num_layers: number of SSD layers.
      is_training: whether the network is in training mode.
      use_keras: if True builds a keras-based feature extractor, if False builds
        a slim-based one.

    Returns:
      an ssd_meta_arch.SSDFeatureExtractor object.
    """
    min_depth = 32
    del use_keras
    return ssd_mobilenet_v1_feature_extractor.SSDMobileNetV1FeatureExtractor(
        is_training,
        depth_multiplier,
        min_depth,
        pad_to_multiple,
        self.conv_hyperparams_fn,
        use_explicit_padding=use_explicit_padding,
        num_layers=num_layers) 
开发者ID:tensorflow,项目名称:models,代码行数:36,代码来源:ssd_mobilenet_v1_feature_extractor_tf1_test.py

示例6: _create_feature_extractor

# 需要导入模块: from object_detection.models import ssd_mobilenet_v1_feature_extractor [as 别名]
# 或者: from object_detection.models.ssd_mobilenet_v1_feature_extractor import SSDMobileNetV1FeatureExtractor [as 别名]
def _create_feature_extractor(self,
                                depth_multiplier,
                                pad_to_multiple,
                                use_explicit_padding=False,
                                num_layers=6,
                                is_training=False,
                                use_keras=False):
    """Constructs a new feature extractor.

    Args:
      depth_multiplier: float depth multiplier for feature extractor
      pad_to_multiple: the nearest multiple to zero pad the input height and
        width dimensions to.
      use_explicit_padding: Use 'VALID' padding for convolutions, but prepad
        inputs so that the output dimensions are the same as if 'SAME' padding
        were used.
      num_layers: number of SSD layers.
      is_training: whether the network is in training mode.
      use_keras: if True builds a keras-based feature extractor, if False builds
        a slim-based one.

    Returns:
      an ssd_meta_arch.SSDFeatureExtractor object.
    """
    min_depth = 32
    if use_keras:
      return (ssd_mobilenet_v1_keras_feature_extractor
              .SSDMobileNetV1KerasFeatureExtractor(
                  is_training=is_training,
                  depth_multiplier=depth_multiplier,
                  min_depth=min_depth,
                  pad_to_multiple=pad_to_multiple,
                  conv_hyperparams=self._build_conv_hyperparams(
                      add_batch_norm=False),
                  freeze_batchnorm=False,
                  inplace_batchnorm_update=False,
                  use_explicit_padding=use_explicit_padding,
                  num_layers=num_layers,
                  name='MobilenetV1'))
    else:
      return ssd_mobilenet_v1_feature_extractor.SSDMobileNetV1FeatureExtractor(
          is_training,
          depth_multiplier,
          min_depth,
          pad_to_multiple,
          self.conv_hyperparams_fn,
          use_explicit_padding=use_explicit_padding,
          num_layers=num_layers) 
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:50,代码来源:ssd_mobilenet_v1_feature_extractor_test.py


注:本文中的object_detection.models.ssd_mobilenet_v1_feature_extractor.SSDMobileNetV1FeatureExtractor方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。