当前位置: 首页>>代码示例>>Python>>正文


Python feature_map_generators.pooling_pyramid_feature_maps方法代码示例

本文整理汇总了Python中object_detection.models.feature_map_generators.pooling_pyramid_feature_maps方法的典型用法代码示例。如果您正苦于以下问题:Python feature_map_generators.pooling_pyramid_feature_maps方法的具体用法?Python feature_map_generators.pooling_pyramid_feature_maps怎么用?Python feature_map_generators.pooling_pyramid_feature_maps使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.models.feature_map_generators的用法示例。


在下文中一共展示了feature_map_generators.pooling_pyramid_feature_maps方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: extract_features

# 需要导入模块: from object_detection.models import feature_map_generators [as 别名]
# 或者: from object_detection.models.feature_map_generators import pooling_pyramid_feature_maps [as 别名]
def extract_features(self, preprocessed_inputs):
    """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]
    """
    preprocessed_inputs = shape_utils.check_min_image_dim(
        33, preprocessed_inputs)

    with tf.variable_scope('MobilenetV1',
                           reuse=self._reuse_weights) as scope:
      with slim.arg_scope(
          mobilenet_v1.mobilenet_v1_arg_scope(
              is_training=None, regularize_depthwise=True)):
        with (slim.arg_scope(self._conv_hyperparams_fn())
              if self._override_base_feature_extractor_hyperparams
              else context_manager.IdentityContextManager()):
          _, image_features = mobilenet_v1.mobilenet_v1_base(
              ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
              final_endpoint='Conv2d_13_pointwise',
              min_depth=self._min_depth,
              depth_multiplier=self._depth_multiplier,
              use_explicit_padding=self._use_explicit_padding,
              scope=scope)
      with slim.arg_scope(self._conv_hyperparams_fn()):
        feature_maps = feature_map_generators.pooling_pyramid_feature_maps(
            base_feature_map_depth=0,
            num_layers=6,
            image_features={
                'image_features': image_features['Conv2d_11_pointwise']
            })
    return feature_maps.values() 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:39,代码来源:ssd_mobilenet_v1_ppn_feature_extractor.py

示例2: test_get_expected_feature_map_shapes

# 需要导入模块: from object_detection.models import feature_map_generators [as 别名]
# 或者: from object_detection.models.feature_map_generators import pooling_pyramid_feature_maps [as 别名]
def test_get_expected_feature_map_shapes(self, replace_pool_with_conv):
    image_features = {
        'image_features': tf.random_uniform([4, 19, 19, 1024])
    }
    feature_maps = feature_map_generators.pooling_pyramid_feature_maps(
        base_feature_map_depth=1024,
        num_layers=6,
        image_features=image_features,
        replace_pool_with_conv=replace_pool_with_conv)

    expected_pool_feature_map_shapes = {
        'Base_Conv2d_1x1_1024': (4, 19, 19, 1024),
        'MaxPool2d_0_2x2': (4, 10, 10, 1024),
        'MaxPool2d_1_2x2': (4, 5, 5, 1024),
        'MaxPool2d_2_2x2': (4, 3, 3, 1024),
        'MaxPool2d_3_2x2': (4, 2, 2, 1024),
        'MaxPool2d_4_2x2': (4, 1, 1, 1024),
    }

    expected_conv_feature_map_shapes = {
        'Base_Conv2d_1x1_1024': (4, 19, 19, 1024),
        'Conv2d_0_3x3_s2_1024': (4, 10, 10, 1024),
        'Conv2d_1_3x3_s2_1024': (4, 5, 5, 1024),
        'Conv2d_2_3x3_s2_1024': (4, 3, 3, 1024),
        'Conv2d_3_3x3_s2_1024': (4, 2, 2, 1024),
        'Conv2d_4_3x3_s2_1024': (4, 1, 1, 1024),
    }

    init_op = tf.global_variables_initializer()
    with self.test_session() as sess:
      sess.run(init_op)
      out_feature_maps = sess.run(feature_maps)
      out_feature_map_shapes = {key: value.shape
                                for key, value in out_feature_maps.items()}
      if replace_pool_with_conv:
        self.assertDictEqual(expected_conv_feature_map_shapes,
                             out_feature_map_shapes)
      else:
        self.assertDictEqual(expected_pool_feature_map_shapes,
                             out_feature_map_shapes) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:42,代码来源:feature_map_generators_test.py

示例3: test_get_expected_variable_names

# 需要导入模块: from object_detection.models import feature_map_generators [as 别名]
# 或者: from object_detection.models.feature_map_generators import pooling_pyramid_feature_maps [as 别名]
def test_get_expected_variable_names(self, replace_pool_with_conv):
    image_features = {
        'image_features': tf.random_uniform([4, 19, 19, 1024])
    }
    feature_maps = feature_map_generators.pooling_pyramid_feature_maps(
        base_feature_map_depth=1024,
        num_layers=6,
        image_features=image_features,
        replace_pool_with_conv=replace_pool_with_conv)

    expected_pool_variables = set([
        'Base_Conv2d_1x1_1024/weights',
        'Base_Conv2d_1x1_1024/biases',
    ])

    expected_conv_variables = set([
        'Base_Conv2d_1x1_1024/weights',
        'Base_Conv2d_1x1_1024/biases',
        'Conv2d_0_3x3_s2_1024/weights',
        'Conv2d_0_3x3_s2_1024/biases',
        'Conv2d_1_3x3_s2_1024/weights',
        'Conv2d_1_3x3_s2_1024/biases',
        'Conv2d_2_3x3_s2_1024/weights',
        'Conv2d_2_3x3_s2_1024/biases',
        'Conv2d_3_3x3_s2_1024/weights',
        'Conv2d_3_3x3_s2_1024/biases',
        'Conv2d_4_3x3_s2_1024/weights',
        'Conv2d_4_3x3_s2_1024/biases',
    ])

    init_op = tf.global_variables_initializer()
    with self.test_session() as sess:
      sess.run(init_op)
      sess.run(feature_maps)
      actual_variable_set = set(
          [var.op.name for var in tf.trainable_variables()])
      if replace_pool_with_conv:
        self.assertSetEqual(expected_conv_variables, actual_variable_set)
      else:
        self.assertSetEqual(expected_pool_variables, actual_variable_set) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:42,代码来源:feature_map_generators_test.py

示例4: extract_features

# 需要导入模块: from object_detection.models import feature_map_generators [as 别名]
# 或者: from object_detection.models.feature_map_generators import pooling_pyramid_feature_maps [as 别名]
def extract_features(self, preprocessed_inputs):
    """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]
    """
    preprocessed_inputs = shape_utils.check_min_image_dim(
        33, preprocessed_inputs)

    with tf.variable_scope('MobilenetV1',
                           reuse=self._reuse_weights) as scope:
      with slim.arg_scope(
          mobilenet_v1.mobilenet_v1_arg_scope(
              is_training=None, regularize_depthwise=True)):
        with (slim.arg_scope(self._conv_hyperparams_fn())
              if self._override_base_feature_extractor_hyperparams
              else context_manager.IdentityContextManager()):
          _, image_features = mobilenet_v1.mobilenet_v1_base(
              ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
              final_endpoint='Conv2d_13_pointwise',
              min_depth=self._min_depth,
              depth_multiplier=self._depth_multiplier,
              use_explicit_padding=self._use_explicit_padding,
              scope=scope)
      with slim.arg_scope(self._conv_hyperparams_fn()):
        feature_maps = feature_map_generators.pooling_pyramid_feature_maps(
            base_feature_map_depth=0,
            num_layers=6,
            image_features={
                'image_features': image_features['Conv2d_11_pointwise']
            })
    return list(feature_maps.values()) 
开发者ID:tensorflow,项目名称:models,代码行数:39,代码来源:ssd_mobilenet_v1_ppn_feature_extractor.py

示例5: extract_features

# 需要导入模块: from object_detection.models import feature_map_generators [as 别名]
# 或者: from object_detection.models.feature_map_generators import pooling_pyramid_feature_maps [as 别名]
def extract_features(self, preprocessed_inputs):
    """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]

    Raises:
      ValueError: depth multiplier is not supported.
    """
    if self._depth_multiplier != 1.0:
      raise ValueError('Depth multiplier not supported.')

    preprocessed_inputs = shape_utils.check_min_image_dim(
        129, preprocessed_inputs)

    with tf.variable_scope(
        self._resnet_scope_name, reuse=self._reuse_weights) as scope:
      with slim.arg_scope(resnet_v1.resnet_arg_scope()):
        with (slim.arg_scope(self._conv_hyperparams_fn())
              if self._override_base_feature_extractor_hyperparams else
              context_manager.IdentityContextManager()):
          with slim.arg_scope(
              [resnet_v1.bottleneck],
              use_bounded_activations=self._use_bounded_activations):
            _, activations = self._resnet_base_fn(
                inputs=ops.pad_to_multiple(preprocessed_inputs,
                                           self._pad_to_multiple),
                num_classes=None,
                is_training=None,
                global_pool=False,
                output_stride=None,
                store_non_strided_activations=True,
                scope=scope)

      with slim.arg_scope(self._conv_hyperparams_fn()):
        feature_maps = feature_map_generators.pooling_pyramid_feature_maps(
            base_feature_map_depth=self._base_feature_map_depth,
            num_layers=self._num_layers,
            image_features={
                'image_features': self._filter_features(activations)['block3']
            })
    return feature_maps.values() 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:49,代码来源:ssd_resnet_v1_ppn_feature_extractor.py

示例6: extract_features

# 需要导入模块: from object_detection.models import feature_map_generators [as 别名]
# 或者: from object_detection.models.feature_map_generators import pooling_pyramid_feature_maps [as 别名]
def extract_features(self, preprocessed_inputs):
    """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]

    Raises:
      ValueError: depth multiplier is not supported.
    """
    if self._depth_multiplier != 1.0:
      raise ValueError('Depth multiplier not supported.')

    preprocessed_inputs = shape_utils.check_min_image_dim(
        129, preprocessed_inputs)

    with tf.variable_scope(
        self._resnet_scope_name, reuse=self._reuse_weights) as scope:
      with slim.arg_scope(resnet_v1.resnet_arg_scope()):
        with (slim.arg_scope(self._conv_hyperparams_fn())
              if self._override_base_feature_extractor_hyperparams else
              context_manager.IdentityContextManager()):
          with slim.arg_scope(
              [resnet_v1.bottleneck],
              use_bounded_activations=self._use_bounded_activations):
            _, activations = self._resnet_base_fn(
                inputs=ops.pad_to_multiple(preprocessed_inputs,
                                           self._pad_to_multiple),
                num_classes=None,
                is_training=None,
                global_pool=False,
                output_stride=None,
                store_non_strided_activations=True,
                scope=scope)

      with slim.arg_scope(self._conv_hyperparams_fn()):
        feature_maps = feature_map_generators.pooling_pyramid_feature_maps(
            base_feature_map_depth=self._base_feature_map_depth,
            num_layers=self._num_layers,
            image_features={
                'image_features': self._filter_features(activations)['block3']
            })
    return list(feature_maps.values()) 
开发者ID:tensorflow,项目名称:models,代码行数:49,代码来源:ssd_resnet_v1_ppn_feature_extractor.py


注:本文中的object_detection.models.feature_map_generators.pooling_pyramid_feature_maps方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。