当前位置: 首页>>代码示例>>Python>>正文


Python model_lib.unstack_batch方法代码示例

本文整理汇总了Python中object_detection.model_lib.unstack_batch方法的典型用法代码示例。如果您正苦于以下问题:Python model_lib.unstack_batch方法的具体用法?Python model_lib.unstack_batch怎么用?Python model_lib.unstack_batch使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.model_lib的用法示例。


在下文中一共展示了model_lib.unstack_batch方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_unbatch_without_unpadding

# 需要导入模块: from object_detection import model_lib [as 别名]
# 或者: from object_detection.model_lib import unstack_batch [as 别名]
def test_unbatch_without_unpadding(self):
    image_placeholder = tf.placeholder(tf.float32, [2, None, None, None])
    groundtruth_boxes_placeholder = tf.placeholder(tf.float32, [2, None, None])
    groundtruth_classes_placeholder = tf.placeholder(tf.float32,
                                                     [2, None, None])
    groundtruth_weights_placeholder = tf.placeholder(tf.float32, [2, None])

    tensor_dict = {
        fields.InputDataFields.image:
            image_placeholder,
        fields.InputDataFields.groundtruth_boxes:
            groundtruth_boxes_placeholder,
        fields.InputDataFields.groundtruth_classes:
            groundtruth_classes_placeholder,
        fields.InputDataFields.groundtruth_weights:
            groundtruth_weights_placeholder
    }
    unbatched_tensor_dict = model_lib.unstack_batch(
        tensor_dict, unpad_groundtruth_tensors=False)

    with self.test_session() as sess:
      unbatched_tensor_dict_out = sess.run(
          unbatched_tensor_dict,
          feed_dict={
              image_placeholder:
                  np.random.rand(2, 4, 4, 3).astype(np.float32),
              groundtruth_boxes_placeholder:
                  np.random.rand(2, 5, 4).astype(np.float32),
              groundtruth_classes_placeholder:
                  np.random.rand(2, 5, 6).astype(np.float32),
              groundtruth_weights_placeholder:
                  np.random.rand(2, 5).astype(np.float32)
          })
    for image_out in unbatched_tensor_dict_out[fields.InputDataFields.image]:
      self.assertAllEqual(image_out.shape, [4, 4, 3])
    for groundtruth_boxes_out in unbatched_tensor_dict_out[
        fields.InputDataFields.groundtruth_boxes]:
      self.assertAllEqual(groundtruth_boxes_out.shape, [5, 4])
    for groundtruth_classes_out in unbatched_tensor_dict_out[
        fields.InputDataFields.groundtruth_classes]:
      self.assertAllEqual(groundtruth_classes_out.shape, [5, 6])
    for groundtruth_weights_out in unbatched_tensor_dict_out[
        fields.InputDataFields.groundtruth_weights]:
      self.assertAllEqual(groundtruth_weights_out.shape, [5]) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:46,代码来源:model_lib_test.py

示例2: test_unbatch_and_unpad_groundtruth_tensors

# 需要导入模块: from object_detection import model_lib [as 别名]
# 或者: from object_detection.model_lib import unstack_batch [as 别名]
def test_unbatch_and_unpad_groundtruth_tensors(self):
    image_placeholder = tf.placeholder(tf.float32, [2, None, None, None])
    groundtruth_boxes_placeholder = tf.placeholder(tf.float32, [2, 5, None])
    groundtruth_classes_placeholder = tf.placeholder(tf.float32, [2, 5, None])
    groundtruth_weights_placeholder = tf.placeholder(tf.float32, [2, 5])
    num_groundtruth_placeholder = tf.placeholder(tf.int32, [2])

    tensor_dict = {
        fields.InputDataFields.image:
            image_placeholder,
        fields.InputDataFields.groundtruth_boxes:
            groundtruth_boxes_placeholder,
        fields.InputDataFields.groundtruth_classes:
            groundtruth_classes_placeholder,
        fields.InputDataFields.groundtruth_weights:
            groundtruth_weights_placeholder,
        fields.InputDataFields.num_groundtruth_boxes:
            num_groundtruth_placeholder
    }
    unbatched_tensor_dict = model_lib.unstack_batch(
        tensor_dict, unpad_groundtruth_tensors=True)
    with self.test_session() as sess:
      unbatched_tensor_dict_out = sess.run(
          unbatched_tensor_dict,
          feed_dict={
              image_placeholder:
                  np.random.rand(2, 4, 4, 3).astype(np.float32),
              groundtruth_boxes_placeholder:
                  np.random.rand(2, 5, 4).astype(np.float32),
              groundtruth_classes_placeholder:
                  np.random.rand(2, 5, 6).astype(np.float32),
              groundtruth_weights_placeholder:
                  np.random.rand(2, 5).astype(np.float32),
              num_groundtruth_placeholder:
                  np.array([3, 3], np.int32)
          })
    for image_out in unbatched_tensor_dict_out[fields.InputDataFields.image]:
      self.assertAllEqual(image_out.shape, [4, 4, 3])
    for groundtruth_boxes_out in unbatched_tensor_dict_out[
        fields.InputDataFields.groundtruth_boxes]:
      self.assertAllEqual(groundtruth_boxes_out.shape, [3, 4])
    for groundtruth_classes_out in unbatched_tensor_dict_out[
        fields.InputDataFields.groundtruth_classes]:
      self.assertAllEqual(groundtruth_classes_out.shape, [3, 6])
    for groundtruth_weights_out in unbatched_tensor_dict_out[
        fields.InputDataFields.groundtruth_weights]:
      self.assertAllEqual(groundtruth_weights_out.shape, [3]) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:49,代码来源:model_lib_test.py


注:本文中的object_detection.model_lib.unstack_batch方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。