当前位置: 首页>>代码示例>>Python>>正文


Python coco_tools.COCOWrapper方法代码示例

本文整理汇总了Python中object_detection.metrics.coco_tools.COCOWrapper方法的典型用法代码示例。如果您正苦于以下问题:Python coco_tools.COCOWrapper方法的具体用法?Python coco_tools.COCOWrapper怎么用?Python coco_tools.COCOWrapper使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.metrics.coco_tools的用法示例。


在下文中一共展示了coco_tools.COCOWrapper方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testCocoWrappers

# 需要导入模块: from object_detection.metrics import coco_tools [as 别名]
# 或者: from object_detection.metrics.coco_tools import COCOWrapper [as 别名]
def testCocoWrappers(self):
    groundtruth = coco_tools.COCOWrapper(self._groundtruth_dict)
    detections = groundtruth.LoadAnnotations(self._detections_list)
    evaluator = coco_tools.COCOEvalWrapper(groundtruth, detections)
    summary_metrics, _ = evaluator.ComputeMetrics()
    self.assertAlmostEqual(1.0, summary_metrics['Precision/mAP']) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:8,代码来源:coco_tools_test.py

示例2: evaluate

# 需要导入模块: from object_detection.metrics import coco_tools [as 别名]
# 或者: from object_detection.metrics.coco_tools import COCOWrapper [as 别名]
def evaluate(self):
    """Evaluates the detection boxes and returns a dictionary of coco metrics.

    Returns:
      A dictionary holding -

      1. summary_metrics:
      'DetectionBoxes_Precision/mAP': mean average precision over classes
        averaged over IOU thresholds ranging from .5 to .95 with .05
        increments.
      'DetectionBoxes_Precision/mAP@.50IOU': mean average precision at 50% IOU
      'DetectionBoxes_Precision/mAP@.75IOU': mean average precision at 75% IOU
      'DetectionBoxes_Precision/mAP (small)': mean average precision for small
        objects (area < 32^2 pixels).
      'DetectionBoxes_Precision/mAP (medium)': mean average precision for
        medium sized objects (32^2 pixels < area < 96^2 pixels).
      'DetectionBoxes_Precision/mAP (large)': mean average precision for large
        objects (96^2 pixels < area < 10000^2 pixels).
      'DetectionBoxes_Recall/AR@1': average recall with 1 detection.
      'DetectionBoxes_Recall/AR@10': average recall with 10 detections.
      'DetectionBoxes_Recall/AR@100': average recall with 100 detections.
      'DetectionBoxes_Recall/AR@100 (small)': average recall for small objects
        with 100.
      'DetectionBoxes_Recall/AR@100 (medium)': average recall for medium objects
        with 100.
      'DetectionBoxes_Recall/AR@100 (large)': average recall for large objects
        with 100 detections.

      2. per_category_ap: if include_metrics_per_category is True, category
      specific results with keys of the form:
      'Precision mAP ByCategory/category' (without the supercategory part if
      no supercategories exist). For backward compatibility
      'PerformanceByCategory' is included in the output regardless of
      all_metrics_per_category.
    """
    groundtruth_dict = {
        'annotations': self._groundtruth_list,
        'images': [{'id': image_id} for image_id in self._image_ids],
        'categories': self._categories
    }
    coco_wrapped_groundtruth = coco_tools.COCOWrapper(groundtruth_dict)
    coco_wrapped_detections = coco_wrapped_groundtruth.LoadAnnotations(
        self._detection_boxes_list)
    box_evaluator = coco_tools.COCOEvalWrapper(
        coco_wrapped_groundtruth, coco_wrapped_detections, agnostic_mode=False)
    box_metrics, box_per_category_ap = box_evaluator.ComputeMetrics(
        include_metrics_per_category=self._include_metrics_per_category,
        all_metrics_per_category=self._all_metrics_per_category)
    box_metrics.update(box_per_category_ap)
    box_metrics = {'DetectionBoxes_'+ key: value
                   for key, value in iter(box_metrics.items())}
    return box_metrics 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:54,代码来源:coco_evaluation.py

示例3: evaluate

# 需要导入模块: from object_detection.metrics import coco_tools [as 别名]
# 或者: from object_detection.metrics.coco_tools import COCOWrapper [as 别名]
def evaluate(self):
    """Evaluates the detection boxes and returns a dictionary of coco metrics.

    Returns:
      A dictionary holding -

      1. summary_metrics:
      'DetectionBoxes_Precision/mAP': mean average precision over classes
        averaged over IOU thresholds ranging from .5 to .95 with .05
        increments.
      'DetectionBoxes_Precision/mAP@.50IOU': mean average precision at 50% IOU
      'DetectionBoxes_Precision/mAP@.75IOU': mean average precision at 75% IOU
      'DetectionBoxes_Precision/mAP (small)': mean average precision for small
        objects (area < 32^2 pixels).
      'DetectionBoxes_Precision/mAP (medium)': mean average precision for
        medium sized objects (32^2 pixels < area < 96^2 pixels).
      'DetectionBoxes_Precision/mAP (large)': mean average precision for large
        objects (96^2 pixels < area < 10000^2 pixels).
      'DetectionBoxes_Recall/AR@1': average recall with 1 detection.
      'DetectionBoxes_Recall/AR@10': average recall with 10 detections.
      'DetectionBoxes_Recall/AR@100': average recall with 100 detections.
      'DetectionBoxes_Recall/AR@100 (small)': average recall for small objects
        with 100.
      'DetectionBoxes_Recall/AR@100 (medium)': average recall for medium objects
        with 100.
      'DetectionBoxes_Recall/AR@100 (large)': average recall for large objects
        with 100 detections.

      2. per_category_ap: if include_metrics_per_category is True, category
      specific results with keys of the form:
      'Precision mAP ByCategory/category' (without the supercategory part if
      no supercategories exist). For backward compatibility
      'PerformanceByCategory' is included in the output regardless of
      all_metrics_per_category.
    """
    groundtruth_dict = {
        'annotations': self._groundtruth_list,
        'images': [{'id': image_id} for image_id in self._image_ids],
        'categories': self._categories
    }
    coco_wrapped_groundtruth = coco_tools.COCOWrapper(groundtruth_dict)
    coco_wrapped_detections = coco_wrapped_groundtruth.LoadAnnotations(
        self._detection_boxes_list)
    box_evaluator = coco_tools.COCOEvalWrapper(
        coco_wrapped_groundtruth, coco_wrapped_detections, agnostic_mode=False)
    box_metrics, box_per_category_ap = box_evaluator.ComputeMetrics(
        include_metrics_per_category=self._include_metrics_per_category,
        all_metrics_per_category=self._all_metrics_per_category)
    box_metrics.update(box_per_category_ap)
    box_metrics = {'DetectionBoxes_'+ key: value
                   for key, value in box_metrics.iteritems()}
    return box_metrics 
开发者ID:ShreyAmbesh,项目名称:Traffic-Rule-Violation-Detection-System,代码行数:54,代码来源:coco_evaluation.py


注:本文中的object_detection.metrics.coco_tools.COCOWrapper方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。