当前位置: 首页>>代码示例>>Python>>正文


Python faster_rcnn_meta_arch.FasterRCNNFeatureExtractor方法代码示例

本文整理汇总了Python中object_detection.meta_architectures.faster_rcnn_meta_arch.FasterRCNNFeatureExtractor方法的典型用法代码示例。如果您正苦于以下问题:Python faster_rcnn_meta_arch.FasterRCNNFeatureExtractor方法的具体用法?Python faster_rcnn_meta_arch.FasterRCNNFeatureExtractor怎么用?Python faster_rcnn_meta_arch.FasterRCNNFeatureExtractor使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.meta_architectures.faster_rcnn_meta_arch的用法示例。


在下文中一共展示了faster_rcnn_meta_arch.FasterRCNNFeatureExtractor方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _build_faster_rcnn_feature_extractor

# 需要导入模块: from object_detection.meta_architectures import faster_rcnn_meta_arch [as 别名]
# 或者: from object_detection.meta_architectures.faster_rcnn_meta_arch import FasterRCNNFeatureExtractor [as 别名]
def _build_faster_rcnn_feature_extractor(
    feature_extractor_config, is_training, reuse_weights=None):
  """Builds a faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Args:
    feature_extractor_config: A FasterRcnnFeatureExtractor proto config from
      faster_rcnn.proto.
    is_training: True if this feature extractor is being built for training.
    reuse_weights: if the feature extractor should reuse weights.

  Returns:
    faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  feature_type = feature_extractor_config.type
  first_stage_features_stride = (
      feature_extractor_config.first_stage_features_stride)

  if feature_type not in FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
        feature_type))
  feature_extractor_class = FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP[
      feature_type]
  return feature_extractor_class(
      is_training, first_stage_features_stride, reuse_weights) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:29,代码来源:model_builder.py

示例2: restore_from_classification_checkpoint_fn

# 需要导入模块: from object_detection.meta_architectures import faster_rcnn_meta_arch [as 别名]
# 或者: from object_detection.meta_architectures.faster_rcnn_meta_arch import FasterRCNNFeatureExtractor [as 别名]
def restore_from_classification_checkpoint_fn(
      self,
      first_stage_feature_extractor_scope,
      second_stage_feature_extractor_scope):
    """Returns a map of variables to load from a foreign checkpoint.

    Note that this overrides the default implementation in
    faster_rcnn_meta_arch.FasterRCNNFeatureExtractor which does not work for
    NASNet-A checkpoints.

    Args:
      first_stage_feature_extractor_scope: A scope name for the first stage
        feature extractor.
      second_stage_feature_extractor_scope: A scope name for the second stage
        feature extractor.

    Returns:
      A dict mapping variable names (to load from a checkpoint) to variables in
      the model graph.
    """
    # Note that the NAS checkpoint only contains the moving average version of
    # the Variables so we need to generate an appropriate dictionary mapping.
    variables_to_restore = {}
    for variable in tf.global_variables():
      if variable.op.name.startswith(
          first_stage_feature_extractor_scope):
        var_name = variable.op.name.replace(
            first_stage_feature_extractor_scope + '/', '')
        var_name += '/ExponentialMovingAverage'
        variables_to_restore[var_name] = variable
      if variable.op.name.startswith(
          second_stage_feature_extractor_scope):
        var_name = variable.op.name.replace(
            second_stage_feature_extractor_scope + '/', '')
        var_name += '/ExponentialMovingAverage'
        variables_to_restore[var_name] = variable
    return variables_to_restore 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:39,代码来源:faster_rcnn_nas_feature_extractor.py

示例3: restore_from_classification_checkpoint_fn

# 需要导入模块: from object_detection.meta_architectures import faster_rcnn_meta_arch [as 别名]
# 或者: from object_detection.meta_architectures.faster_rcnn_meta_arch import FasterRCNNFeatureExtractor [as 别名]
def restore_from_classification_checkpoint_fn(
      self,
      first_stage_feature_extractor_scope,
      second_stage_feature_extractor_scope):
    """Returns a map of variables to load from a foreign checkpoint.

    Note that this overrides the default implementation in
    faster_rcnn_meta_arch.FasterRCNNFeatureExtractor which does not work for
    PNASNet checkpoints.

    Args:
      first_stage_feature_extractor_scope: A scope name for the first stage
        feature extractor.
      second_stage_feature_extractor_scope: A scope name for the second stage
        feature extractor.

    Returns:
      A dict mapping variable names (to load from a checkpoint) to variables in
      the model graph.
    """
    variables_to_restore = {}
    for variable in tf.global_variables():
      if variable.op.name.startswith(
          first_stage_feature_extractor_scope):
        var_name = variable.op.name.replace(
            first_stage_feature_extractor_scope + '/', '')
        var_name += '/ExponentialMovingAverage'
        variables_to_restore[var_name] = variable
      if variable.op.name.startswith(
          second_stage_feature_extractor_scope):
        var_name = variable.op.name.replace(
            second_stage_feature_extractor_scope + '/', '')
        var_name += '/ExponentialMovingAverage'
        variables_to_restore[var_name] = variable
    return variables_to_restore 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:37,代码来源:faster_rcnn_pnas_feature_extractor.py

示例4: _build_faster_rcnn_feature_extractor

# 需要导入模块: from object_detection.meta_architectures import faster_rcnn_meta_arch [as 别名]
# 或者: from object_detection.meta_architectures.faster_rcnn_meta_arch import FasterRCNNFeatureExtractor [as 别名]
def _build_faster_rcnn_feature_extractor(
    feature_extractor_config, is_training, reuse_weights=None,
    inplace_batchnorm_update=False):
  """Builds a faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Args:
    feature_extractor_config: A FasterRcnnFeatureExtractor proto config from
      faster_rcnn.proto.
    is_training: True if this feature extractor is being built for training.
    reuse_weights: if the feature extractor should reuse weights.
    inplace_batchnorm_update: Whether to update batch_norm inplace during
      training. This is required for batch norm to work correctly on TPUs. When
      this is false, user must add a control dependency on
      tf.GraphKeys.UPDATE_OPS for train/loss op in order to update the batch
      norm moving average parameters.

  Returns:
    faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  if inplace_batchnorm_update:
    raise ValueError('inplace batchnorm updates not supported.')
  feature_type = feature_extractor_config.type
  first_stage_features_stride = (
      feature_extractor_config.first_stage_features_stride)
  batch_norm_trainable = feature_extractor_config.batch_norm_trainable

  if feature_type not in FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
        feature_type))
  feature_extractor_class = FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP[
      feature_type]
  return feature_extractor_class(
      is_training, first_stage_features_stride,
      batch_norm_trainable, reuse_weights) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:39,代码来源:model_builder.py

示例5: _build_faster_rcnn_feature_extractor

# 需要导入模块: from object_detection.meta_architectures import faster_rcnn_meta_arch [as 别名]
# 或者: from object_detection.meta_architectures.faster_rcnn_meta_arch import FasterRCNNFeatureExtractor [as 别名]
def _build_faster_rcnn_feature_extractor(
    feature_extractor_config, is_training, reuse_weights=None):
  """Builds a faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Args:
    feature_extractor_config: A FasterRcnnFeatureExtractor proto config from
      faster_rcnn.proto.
    is_training: True if this feature extractor is being built for training.
    reuse_weights: if the feature extractor should reuse weights.

  Returns:
    faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  feature_type = feature_extractor_config.type
  first_stage_features_stride = (
      feature_extractor_config.first_stage_features_stride)
  batch_norm_trainable = feature_extractor_config.batch_norm_trainable

  if feature_type not in FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
        feature_type))
  feature_extractor_class = FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP[
      feature_type]
  return feature_extractor_class(
      is_training, first_stage_features_stride,
      batch_norm_trainable, reuse_weights) 
开发者ID:cagbal,项目名称:ros_people_object_detection_tensorflow,代码行数:31,代码来源:model_builder.py

示例6: restore_from_classification_checkpoint_fn

# 需要导入模块: from object_detection.meta_architectures import faster_rcnn_meta_arch [as 别名]
# 或者: from object_detection.meta_architectures.faster_rcnn_meta_arch import FasterRCNNFeatureExtractor [as 别名]
def restore_from_classification_checkpoint_fn(
      self,
      first_stage_feature_extractor_scope,
      second_stage_feature_extractor_scope):
    """Returns a map of variables to load from a foreign checkpoint.

    Note that this overrides the default implementation in
    faster_rcnn_meta_arch.FasterRCNNFeatureExtractor which does not work for
    NASNet-A checkpoints.

    Args:
      first_stage_feature_extractor_scope: A scope name for the first stage
        feature extractor.
      second_stage_feature_extractor_scope: A scope name for the second stage
        feature extractor.

    Returns:
      A dict mapping variable names (to load from a checkpoint) to variables in
      the model graph.
    """
    # Note that the NAS checkpoint only contains the moving average version of
    # the Variables so we need to generate an appropriate dictionary mapping.
    variables_to_restore = {}
    for variable in variables_helper.get_global_variables_safely():
      if variable.op.name.startswith(
          first_stage_feature_extractor_scope):
        var_name = variable.op.name.replace(
            first_stage_feature_extractor_scope + '/', '')
        var_name += '/ExponentialMovingAverage'
        variables_to_restore[var_name] = variable
      if variable.op.name.startswith(
          second_stage_feature_extractor_scope):
        var_name = variable.op.name.replace(
            second_stage_feature_extractor_scope + '/', '')
        var_name += '/ExponentialMovingAverage'
        variables_to_restore[var_name] = variable
    return variables_to_restore 
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:39,代码来源:faster_rcnn_nas_feature_extractor.py


注:本文中的object_detection.meta_architectures.faster_rcnn_meta_arch.FasterRCNNFeatureExtractor方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。