当前位置: 首页>>代码示例>>Python>>正文


Python evaluator.get_evaluators方法代码示例

本文整理汇总了Python中object_detection.evaluator.get_evaluators方法的典型用法代码示例。如果您正苦于以下问题:Python evaluator.get_evaluators方法的具体用法?Python evaluator.get_evaluators怎么用?Python evaluator.get_evaluators使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.evaluator的用法示例。


在下文中一共展示了evaluator.get_evaluators方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: read_data_and_evaluate

# 需要导入模块: from object_detection import evaluator [as 别名]
# 或者: from object_detection.evaluator import get_evaluators [as 别名]
def read_data_and_evaluate(input_config, eval_config):
  """Reads pre-computed object detections and groundtruth from tf_record.

  Args:
    input_config: input config proto of type
      object_detection.protos.InputReader.
    eval_config: evaluation config proto of type
      object_detection.protos.EvalConfig.

  Returns:
    Evaluated detections metrics.

  Raises:
    ValueError: if input_reader type is not supported or metric type is unknown.
  """
  if input_config.WhichOneof('input_reader') == 'tf_record_input_reader':
    input_paths = input_config.tf_record_input_reader.input_path

    label_map = label_map_util.load_labelmap(input_config.label_map_path)
    max_num_classes = max([item.id for item in label_map.item])
    categories = label_map_util.convert_label_map_to_categories(
        label_map, max_num_classes)

    object_detection_evaluators = evaluator.get_evaluators(
        eval_config, categories)
    # Support a single evaluator
    object_detection_evaluator = object_detection_evaluators[0]

    skipped_images = 0
    processed_images = 0
    for input_path in _generate_filenames(input_paths):
      tf.logging.info('Processing file: {0}'.format(input_path))

      record_iterator = tf.python_io.tf_record_iterator(path=input_path)
      data_parser = tf_example_parser.TfExampleDetectionAndGTParser()

      for string_record in record_iterator:
        tf.logging.log_every_n(tf.logging.INFO, 'Processed %d images...', 1000,
                               processed_images)
        processed_images += 1

        example = tf.train.Example()
        example.ParseFromString(string_record)
        decoded_dict = data_parser.parse(example)

        if decoded_dict:
          object_detection_evaluator.add_single_ground_truth_image_info(
              decoded_dict[standard_fields.DetectionResultFields.key],
              decoded_dict)
          object_detection_evaluator.add_single_detected_image_info(
              decoded_dict[standard_fields.DetectionResultFields.key],
              decoded_dict)
        else:
          skipped_images += 1
          tf.logging.info('Skipped images: {0}'.format(skipped_images))

    return object_detection_evaluator.evaluate()

  raise ValueError('Unsupported input_reader_config.') 
开发者ID:cagbal,项目名称:ros_people_object_detection_tensorflow,代码行数:61,代码来源:offline_eval_map_corloc.py


注:本文中的object_detection.evaluator.get_evaluators方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。