当前位置: 首页>>代码示例>>Python>>正文


Python tf_example_decoder.TfExampleDecoder方法代码示例

本文整理汇总了Python中object_detection.data_decoders.tf_example_decoder.TfExampleDecoder方法的典型用法代码示例。如果您正苦于以下问题:Python tf_example_decoder.TfExampleDecoder方法的具体用法?Python tf_example_decoder.TfExampleDecoder怎么用?Python tf_example_decoder.TfExampleDecoder使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.data_decoders.tf_example_decoder的用法示例。


在下文中一共展示了tf_example_decoder.TfExampleDecoder方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testDecodeJpegImage

# 需要导入模块: from object_detection.data_decoders import tf_example_decoder [as 别名]
# 或者: from object_detection.data_decoders.tf_example_decoder import TfExampleDecoder [as 别名]
def testDecodeJpegImage(self):
    image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
    encoded_jpeg = self._EncodeImage(image_tensor)
    decoded_jpeg = self._DecodeImage(encoded_jpeg)
    example = tf.train.Example(features=tf.train.Features(feature={
        'image/encoded': self._BytesFeature(encoded_jpeg),
        'image/format': self._BytesFeature('jpeg'),
        'image/source_id': self._BytesFeature('image_id'),
    })).SerializeToString()

    example_decoder = tf_example_decoder.TfExampleDecoder()
    tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))

    self.assertAllEqual((tensor_dict[fields.InputDataFields.image].
                         get_shape().as_list()), [None, None, 3])
    with self.test_session() as sess:
      tensor_dict = sess.run(tensor_dict)

    self.assertAllEqual(decoded_jpeg, tensor_dict[fields.InputDataFields.image])
    self.assertEqual('image_id', tensor_dict[fields.InputDataFields.source_id]) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:22,代码来源:tf_example_decoder_test.py

示例2: testDecodeImageKeyAndFilename

# 需要导入模块: from object_detection.data_decoders import tf_example_decoder [as 别名]
# 或者: from object_detection.data_decoders.tf_example_decoder import TfExampleDecoder [as 别名]
def testDecodeImageKeyAndFilename(self):
    image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
    encoded_jpeg = self._EncodeImage(image_tensor)
    example = tf.train.Example(features=tf.train.Features(feature={
        'image/encoded': self._BytesFeature(encoded_jpeg),
        'image/key/sha256': self._BytesFeature('abc'),
        'image/filename': self._BytesFeature('filename')
    })).SerializeToString()

    example_decoder = tf_example_decoder.TfExampleDecoder()
    tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))

    with self.test_session() as sess:
      tensor_dict = sess.run(tensor_dict)

    self.assertEqual('abc', tensor_dict[fields.InputDataFields.key])
    self.assertEqual('filename', tensor_dict[fields.InputDataFields.filename]) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:19,代码来源:tf_example_decoder_test.py

示例3: testDecodePngImage

# 需要导入模块: from object_detection.data_decoders import tf_example_decoder [as 别名]
# 或者: from object_detection.data_decoders.tf_example_decoder import TfExampleDecoder [as 别名]
def testDecodePngImage(self):
    image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
    encoded_png = self._EncodeImage(image_tensor, encoding_type='png')
    decoded_png = self._DecodeImage(encoded_png, encoding_type='png')
    example = tf.train.Example(features=tf.train.Features(feature={
        'image/encoded': self._BytesFeature(encoded_png),
        'image/format': self._BytesFeature('png'),
        'image/source_id': self._BytesFeature('image_id')
    })).SerializeToString()

    example_decoder = tf_example_decoder.TfExampleDecoder()
    tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))

    self.assertAllEqual((tensor_dict[fields.InputDataFields.image].
                         get_shape().as_list()), [None, None, 3])
    with self.test_session() as sess:
      tensor_dict = sess.run(tensor_dict)

    self.assertAllEqual(decoded_png, tensor_dict[fields.InputDataFields.image])
    self.assertEqual('image_id', tensor_dict[fields.InputDataFields.source_id]) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:22,代码来源:tf_example_decoder_test.py

示例4: testDecodeObjectArea

# 需要导入模块: from object_detection.data_decoders import tf_example_decoder [as 别名]
# 或者: from object_detection.data_decoders.tf_example_decoder import TfExampleDecoder [as 别名]
def testDecodeObjectArea(self):
    image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
    encoded_jpeg = self._EncodeImage(image_tensor)
    object_area = [100., 174.]
    example = tf.train.Example(features=tf.train.Features(feature={
        'image/encoded': self._BytesFeature(encoded_jpeg),
        'image/format': self._BytesFeature('jpeg'),
        'image/object/area': self._FloatFeature(object_area),
    })).SerializeToString()

    example_decoder = tf_example_decoder.TfExampleDecoder()
    tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))

    self.assertAllEqual((tensor_dict[fields.InputDataFields.groundtruth_area].
                         get_shape().as_list()), [None])
    with self.test_session() as sess:
      tensor_dict = sess.run(tensor_dict)

    self.assertAllEqual(object_area,
                        tensor_dict[fields.InputDataFields.groundtruth_area]) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:22,代码来源:tf_example_decoder_test.py

示例5: testDecodeObjectIsCrowd

# 需要导入模块: from object_detection.data_decoders import tf_example_decoder [as 别名]
# 或者: from object_detection.data_decoders.tf_example_decoder import TfExampleDecoder [as 别名]
def testDecodeObjectIsCrowd(self):
    image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
    encoded_jpeg = self._EncodeImage(image_tensor)
    object_is_crowd = [0, 1]
    example = tf.train.Example(features=tf.train.Features(feature={
        'image/encoded': self._BytesFeature(encoded_jpeg),
        'image/format': self._BytesFeature('jpeg'),
        'image/object/is_crowd': self._Int64Feature(object_is_crowd),
    })).SerializeToString()

    example_decoder = tf_example_decoder.TfExampleDecoder()
    tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))

    self.assertAllEqual((tensor_dict[
        fields.InputDataFields.groundtruth_is_crowd].get_shape().as_list()),
                        [None])
    with self.test_session() as sess:
      tensor_dict = sess.run(tensor_dict)

    self.assertAllEqual([bool(item) for item in object_is_crowd],
                        tensor_dict[
                            fields.InputDataFields.groundtruth_is_crowd]) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:24,代码来源:tf_example_decoder_test.py

示例6: testDecodeObjectDifficult

# 需要导入模块: from object_detection.data_decoders import tf_example_decoder [as 别名]
# 或者: from object_detection.data_decoders.tf_example_decoder import TfExampleDecoder [as 别名]
def testDecodeObjectDifficult(self):
    image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
    encoded_jpeg = self._EncodeImage(image_tensor)
    object_difficult = [0, 1]
    example = tf.train.Example(features=tf.train.Features(feature={
        'image/encoded': self._BytesFeature(encoded_jpeg),
        'image/format': self._BytesFeature('jpeg'),
        'image/object/difficult': self._Int64Feature(object_difficult),
    })).SerializeToString()

    example_decoder = tf_example_decoder.TfExampleDecoder()
    tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))

    self.assertAllEqual((tensor_dict[
        fields.InputDataFields.groundtruth_difficult].get_shape().as_list()),
                        [None])
    with self.test_session() as sess:
      tensor_dict = sess.run(tensor_dict)

    self.assertAllEqual([bool(item) for item in object_difficult],
                        tensor_dict[
                            fields.InputDataFields.groundtruth_difficult]) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:24,代码来源:tf_example_decoder_test.py

示例7: testDecodeJpegImage

# 需要导入模块: from object_detection.data_decoders import tf_example_decoder [as 别名]
# 或者: from object_detection.data_decoders.tf_example_decoder import TfExampleDecoder [as 别名]
def testDecodeJpegImage(self):
    image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
    encoded_jpeg = self._EncodeImage(image_tensor)
    decoded_jpeg = self._DecodeImage(encoded_jpeg)
    example = tf.train.Example(features=tf.train.Features(feature={
        'image/encoded': self._BytesFeature(encoded_jpeg),
        'image/format': self._BytesFeature('jpeg'),
        'image/source_id': self._BytesFeature('image_id'),
    })).SerializeToString()

    example_decoder = tf_example_decoder.TfExampleDecoder()
    tensor_dict = example_decoder.Decode(tf.convert_to_tensor(example))

    self.assertAllEqual((tensor_dict[fields.InputDataFields.image].
                         get_shape().as_list()), [None, None, 3])
    with self.test_session() as sess:
      tensor_dict = sess.run(tensor_dict)

    self.assertAllEqual(decoded_jpeg, tensor_dict[fields.InputDataFields.image])
    self.assertEqual('image_id', tensor_dict[fields.InputDataFields.source_id]) 
开发者ID:datitran,项目名称:object_detector_app,代码行数:22,代码来源:tf_example_decoder_test.py

示例8: testDecodeImageKeyAndFilename

# 需要导入模块: from object_detection.data_decoders import tf_example_decoder [as 别名]
# 或者: from object_detection.data_decoders.tf_example_decoder import TfExampleDecoder [as 别名]
def testDecodeImageKeyAndFilename(self):
    image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
    encoded_jpeg = self._EncodeImage(image_tensor)
    example = tf.train.Example(features=tf.train.Features(feature={
        'image/encoded': self._BytesFeature(encoded_jpeg),
        'image/key/sha256': self._BytesFeature('abc'),
        'image/filename': self._BytesFeature('filename')
    })).SerializeToString()

    example_decoder = tf_example_decoder.TfExampleDecoder()
    tensor_dict = example_decoder.Decode(tf.convert_to_tensor(example))

    with self.test_session() as sess:
      tensor_dict = sess.run(tensor_dict)

    self.assertEqual('abc', tensor_dict[fields.InputDataFields.key])
    self.assertEqual('filename', tensor_dict[fields.InputDataFields.filename]) 
开发者ID:datitran,项目名称:object_detector_app,代码行数:19,代码来源:tf_example_decoder_test.py

示例9: testDecodePngImage

# 需要导入模块: from object_detection.data_decoders import tf_example_decoder [as 别名]
# 或者: from object_detection.data_decoders.tf_example_decoder import TfExampleDecoder [as 别名]
def testDecodePngImage(self):
    image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
    encoded_png = self._EncodeImage(image_tensor, encoding_type='png')
    decoded_png = self._DecodeImage(encoded_png, encoding_type='png')
    example = tf.train.Example(features=tf.train.Features(feature={
        'image/encoded': self._BytesFeature(encoded_png),
        'image/format': self._BytesFeature('png'),
        'image/source_id': self._BytesFeature('image_id')
    })).SerializeToString()

    example_decoder = tf_example_decoder.TfExampleDecoder()
    tensor_dict = example_decoder.Decode(tf.convert_to_tensor(example))

    self.assertAllEqual((tensor_dict[fields.InputDataFields.image].
                         get_shape().as_list()), [None, None, 3])
    with self.test_session() as sess:
      tensor_dict = sess.run(tensor_dict)

    self.assertAllEqual(decoded_png, tensor_dict[fields.InputDataFields.image])
    self.assertEqual('image_id', tensor_dict[fields.InputDataFields.source_id]) 
开发者ID:datitran,项目名称:object_detector_app,代码行数:22,代码来源:tf_example_decoder_test.py

示例10: testDecodeObjectArea

# 需要导入模块: from object_detection.data_decoders import tf_example_decoder [as 别名]
# 或者: from object_detection.data_decoders.tf_example_decoder import TfExampleDecoder [as 别名]
def testDecodeObjectArea(self):
    image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
    encoded_jpeg = self._EncodeImage(image_tensor)
    object_area = [100., 174.]
    example = tf.train.Example(features=tf.train.Features(feature={
        'image/encoded': self._BytesFeature(encoded_jpeg),
        'image/format': self._BytesFeature('jpeg'),
        'image/object/area': self._FloatFeature(object_area),
    })).SerializeToString()

    example_decoder = tf_example_decoder.TfExampleDecoder()
    tensor_dict = example_decoder.Decode(tf.convert_to_tensor(example))

    self.assertAllEqual((tensor_dict[fields.InputDataFields.groundtruth_area].
                         get_shape().as_list()), [None])
    with self.test_session() as sess:
      tensor_dict = sess.run(tensor_dict)

    self.assertAllEqual(object_area,
                        tensor_dict[fields.InputDataFields.groundtruth_area]) 
开发者ID:datitran,项目名称:object_detector_app,代码行数:22,代码来源:tf_example_decoder_test.py

示例11: testDecodeObjectIsCrowd

# 需要导入模块: from object_detection.data_decoders import tf_example_decoder [as 别名]
# 或者: from object_detection.data_decoders.tf_example_decoder import TfExampleDecoder [as 别名]
def testDecodeObjectIsCrowd(self):
    image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
    encoded_jpeg = self._EncodeImage(image_tensor)
    object_is_crowd = [0, 1]
    example = tf.train.Example(features=tf.train.Features(feature={
        'image/encoded': self._BytesFeature(encoded_jpeg),
        'image/format': self._BytesFeature('jpeg'),
        'image/object/is_crowd': self._Int64Feature(object_is_crowd),
    })).SerializeToString()

    example_decoder = tf_example_decoder.TfExampleDecoder()
    tensor_dict = example_decoder.Decode(tf.convert_to_tensor(example))

    self.assertAllEqual((tensor_dict[
        fields.InputDataFields.groundtruth_is_crowd].get_shape().as_list()),
                        [None])
    with self.test_session() as sess:
      tensor_dict = sess.run(tensor_dict)

    self.assertAllEqual([bool(item) for item in object_is_crowd],
                        tensor_dict[
                            fields.InputDataFields.groundtruth_is_crowd]) 
开发者ID:datitran,项目名称:object_detector_app,代码行数:24,代码来源:tf_example_decoder_test.py

示例12: testDecodeObjectDifficult

# 需要导入模块: from object_detection.data_decoders import tf_example_decoder [as 别名]
# 或者: from object_detection.data_decoders.tf_example_decoder import TfExampleDecoder [as 别名]
def testDecodeObjectDifficult(self):
    image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
    encoded_jpeg = self._EncodeImage(image_tensor)
    object_difficult = [0, 1]
    example = tf.train.Example(features=tf.train.Features(feature={
        'image/encoded': self._BytesFeature(encoded_jpeg),
        'image/format': self._BytesFeature('jpeg'),
        'image/object/difficult': self._Int64Feature(object_difficult),
    })).SerializeToString()

    example_decoder = tf_example_decoder.TfExampleDecoder()
    tensor_dict = example_decoder.Decode(tf.convert_to_tensor(example))

    self.assertAllEqual((tensor_dict[
        fields.InputDataFields.groundtruth_difficult].get_shape().as_list()),
                        [None])
    with self.test_session() as sess:
      tensor_dict = sess.run(tensor_dict)

    self.assertAllEqual([bool(item) for item in object_difficult],
                        tensor_dict[
                            fields.InputDataFields.groundtruth_difficult]) 
开发者ID:datitran,项目名称:object_detector_app,代码行数:24,代码来源:tf_example_decoder_test.py

示例13: _tf_example_input_placeholder

# 需要导入模块: from object_detection.data_decoders import tf_example_decoder [as 别名]
# 或者: from object_detection.data_decoders.tf_example_decoder import TfExampleDecoder [as 别名]
def _tf_example_input_placeholder():
  """Returns input that accepts a batch of strings with tf examples.

  Returns:
    a tuple of input placeholder and the output decoded images.
  """
  batch_tf_example_placeholder = tf.placeholder(
      tf.string, shape=[None], name='tf_example')
  def decode(tf_example_string_tensor):
    tensor_dict = tf_example_decoder.TfExampleDecoder().decode(
        tf_example_string_tensor)
    image_tensor = tensor_dict[fields.InputDataFields.image]
    return image_tensor
  return (batch_tf_example_placeholder,
          shape_utils.static_or_dynamic_map_fn(
              decode,
              elems=batch_tf_example_placeholder,
              dtype=tf.uint8,
              parallel_iterations=32,
              back_prop=False)) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:22,代码来源:exporter.py

示例14: testDecodeImageKeyAndFilename

# 需要导入模块: from object_detection.data_decoders import tf_example_decoder [as 别名]
# 或者: from object_detection.data_decoders.tf_example_decoder import TfExampleDecoder [as 别名]
def testDecodeImageKeyAndFilename(self):
    image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8)
    encoded_jpeg = self._EncodeImage(image_tensor)
    example = tf.train.Example(
        features=tf.train.Features(
            feature={
                'image/encoded': dataset_util.bytes_feature(encoded_jpeg),
                'image/key/sha256': dataset_util.bytes_feature('abc'),
                'image/filename': dataset_util.bytes_feature('filename')
            })).SerializeToString()

    example_decoder = tf_example_decoder.TfExampleDecoder()
    tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))

    with self.test_session() as sess:
      tensor_dict = sess.run(tensor_dict)

    self.assertEqual('abc', tensor_dict[fields.InputDataFields.key])
    self.assertEqual('filename', tensor_dict[fields.InputDataFields.filename]) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:21,代码来源:tf_example_decoder_test.py

示例15: testDecodeObjectArea

# 需要导入模块: from object_detection.data_decoders import tf_example_decoder [as 别名]
# 或者: from object_detection.data_decoders.tf_example_decoder import TfExampleDecoder [as 别名]
def testDecodeObjectArea(self):
    image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8)
    encoded_jpeg = self._EncodeImage(image_tensor)
    object_area = [100., 174.]
    example = tf.train.Example(
        features=tf.train.Features(
            feature={
                'image/encoded':
                    dataset_util.bytes_feature(encoded_jpeg),
                'image/format':
                    dataset_util.bytes_feature('jpeg'),
                'image/object/area':
                    dataset_util.float_list_feature(object_area),
            })).SerializeToString()

    example_decoder = tf_example_decoder.TfExampleDecoder()
    tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))

    self.assertAllEqual((tensor_dict[fields.InputDataFields.groundtruth_area]
                         .get_shape().as_list()), [2])
    with self.test_session() as sess:
      tensor_dict = sess.run(tensor_dict)

    self.assertAllEqual(object_area,
                        tensor_dict[fields.InputDataFields.groundtruth_area]) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:27,代码来源:tf_example_decoder_test.py


注:本文中的object_detection.data_decoders.tf_example_decoder.TfExampleDecoder方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。