本文整理汇总了Python中object_detection.core.target_assigner.batch_assign_targets方法的典型用法代码示例。如果您正苦于以下问题:Python target_assigner.batch_assign_targets方法的具体用法?Python target_assigner.batch_assign_targets怎么用?Python target_assigner.batch_assign_targets使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类object_detection.core.target_assigner
的用法示例。
在下文中一共展示了target_assigner.batch_assign_targets方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _assign_targets
# 需要导入模块: from object_detection.core import target_assigner [as 别名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 别名]
def _assign_targets(self, groundtruth_boxes_list, groundtruth_classes_list):
"""Assign groundtruth targets.
Adds a background class to each one-hot encoding of groundtruth classes
and uses target assigner to obtain regression and classification targets.
Args:
groundtruth_boxes_list: a list of 2-D tensors of shape [num_boxes, 4]
containing coordinates of the groundtruth boxes.
Groundtruth boxes are provided in [y_min, x_min, y_max, x_max]
format and assumed to be normalized and clipped
relative to the image window with y_min <= y_max and x_min <= x_max.
groundtruth_classes_list: a list of 2-D one-hot (or k-hot) tensors of
shape [num_boxes, num_classes] containing the class targets with the 0th
index assumed to map to the first non-background class.
Returns:
batch_cls_targets: a tensor with shape [batch_size, num_anchors,
num_classes],
batch_cls_weights: a tensor with shape [batch_size, num_anchors],
batch_reg_targets: a tensor with shape [batch_size, num_anchors,
box_code_dimension]
batch_reg_weights: a tensor with shape [batch_size, num_anchors],
match_list: a list of matcher.Match objects encoding the match between
anchors and groundtruth boxes for each image of the batch,
with rows of the Match objects corresponding to groundtruth boxes
and columns corresponding to anchors.
"""
groundtruth_boxlists = [
box_list.BoxList(boxes) for boxes in groundtruth_boxes_list
]
groundtruth_classes_with_background_list = [
tf.pad(one_hot_encoding, [[0, 0], [1, 0]], mode='CONSTANT')
for one_hot_encoding in groundtruth_classes_list
]
return target_assigner.batch_assign_targets(
self._target_assigner, self.anchors, groundtruth_boxlists,
groundtruth_classes_with_background_list)
示例2: test_batch_assign_empty_groundtruth
# 需要导入模块: from object_detection.core import target_assigner [as 别名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 别名]
def test_batch_assign_empty_groundtruth(self):
def graph_fn(anchor_means, groundtruth_box_corners, gt_class_targets):
groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners)
gt_box_batch = [groundtruth_boxlist]
gt_class_targets_batch = [gt_class_targets]
anchors_boxlist = box_list.BoxList(anchor_means)
multiclass_target_assigner = self._get_target_assigner()
num_classes = 3
unmatched_class_label = tf.constant([1] + num_classes * [0], tf.float32)
(cls_targets, cls_weights, reg_targets, reg_weights,
_) = targetassigner.batch_assign_targets(
multiclass_target_assigner, anchors_boxlist,
gt_box_batch, gt_class_targets_batch, unmatched_class_label)
return (cls_targets, cls_weights, reg_targets, reg_weights)
groundtruth_box_corners = np.zeros((0, 4), dtype=np.float32)
anchor_means = np.array([[0, 0, .25, .25],
[0, .25, 1, 1]], dtype=np.float32)
exp_cls_targets = [[[1, 0, 0, 0],
[1, 0, 0, 0]]]
exp_cls_weights = [[[1, 1, 1, 1],
[1, 1, 1, 1]]]
exp_reg_targets = [[[0, 0, 0, 0],
[0, 0, 0, 0]]]
exp_reg_weights = [[0, 0]]
num_classes = 3
pad = 1
gt_class_targets = np.zeros((0, num_classes + pad), dtype=np.float32)
(cls_targets_out,
cls_weights_out, reg_targets_out, reg_weights_out) = self.execute(
graph_fn, [anchor_means, groundtruth_box_corners, gt_class_targets])
self.assertAllClose(cls_targets_out, exp_cls_targets)
self.assertAllClose(cls_weights_out, exp_cls_weights)
self.assertAllClose(reg_targets_out, exp_reg_targets)
self.assertAllClose(reg_weights_out, exp_reg_weights)
示例3: test_batch_assign_empty_groundtruth
# 需要导入模块: from object_detection.core import target_assigner [as 别名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 别名]
def test_batch_assign_empty_groundtruth(self):
def graph_fn(anchor_means, groundtruth_box_corners, gt_class_targets):
groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners)
gt_box_batch = [groundtruth_boxlist]
gt_class_targets_batch = [gt_class_targets]
anchors_boxlist = box_list.BoxList(anchor_means)
multiclass_target_assigner = self._get_multi_class_target_assigner(
num_classes=3)
(cls_targets, cls_weights, reg_targets, reg_weights,
_) = targetassigner.batch_assign_targets(
multiclass_target_assigner, anchors_boxlist,
gt_box_batch, gt_class_targets_batch)
return (cls_targets, cls_weights, reg_targets, reg_weights)
groundtruth_box_corners = np.zeros((0, 4), dtype=np.float32)
anchor_means = np.array([[0, 0, .25, .25],
[0, .25, 1, 1]], dtype=np.float32)
exp_reg_targets = [[[0, 0, 0, 0],
[0, 0, 0, 0]]]
exp_cls_weights = [[1, 1]]
exp_cls_targets = [[[1, 0, 0, 0],
[1, 0, 0, 0]]]
exp_reg_weights = [[0, 0]]
num_classes = 3
pad = 1
gt_class_targets = np.zeros((0, num_classes + pad), dtype=np.float32)
(cls_targets_out,
cls_weights_out, reg_targets_out, reg_weights_out) = self.execute(
graph_fn, [anchor_means, groundtruth_box_corners, gt_class_targets])
self.assertAllClose(cls_targets_out, exp_cls_targets)
self.assertAllClose(cls_weights_out, exp_cls_weights)
self.assertAllClose(reg_targets_out, exp_reg_targets)
self.assertAllClose(reg_weights_out, exp_reg_weights)
示例4: test_batch_assign_empty_groundtruth
# 需要导入模块: from object_detection.core import target_assigner [as 别名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 别名]
def test_batch_assign_empty_groundtruth(self):
def graph_fn(anchor_means, groundtruth_box_corners, gt_class_targets):
groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners)
gt_box_batch = [groundtruth_boxlist]
gt_class_targets_batch = [gt_class_targets]
anchors_boxlist = box_list.BoxList(anchor_means)
multiclass_target_assigner = self._get_target_assigner()
num_classes = 3
unmatched_class_label = tf.constant([1] + num_classes * [0], tf.float32)
(cls_targets, cls_weights, reg_targets, reg_weights,
_) = targetassigner.batch_assign_targets(
multiclass_target_assigner, anchors_boxlist,
gt_box_batch, gt_class_targets_batch, unmatched_class_label)
return (cls_targets, cls_weights, reg_targets, reg_weights)
groundtruth_box_corners = np.zeros((0, 4), dtype=np.float32)
anchor_means = np.array([[0, 0, .25, .25],
[0, .25, 1, 1]], dtype=np.float32)
exp_reg_targets = [[[0, 0, 0, 0],
[0, 0, 0, 0]]]
exp_cls_weights = [[1, 1]]
exp_cls_targets = [[[1, 0, 0, 0],
[1, 0, 0, 0]]]
exp_reg_weights = [[0, 0]]
num_classes = 3
pad = 1
gt_class_targets = np.zeros((0, num_classes + pad), dtype=np.float32)
(cls_targets_out,
cls_weights_out, reg_targets_out, reg_weights_out) = self.execute(
graph_fn, [anchor_means, groundtruth_box_corners, gt_class_targets])
self.assertAllClose(cls_targets_out, exp_cls_targets)
self.assertAllClose(cls_weights_out, exp_cls_weights)
self.assertAllClose(reg_targets_out, exp_reg_targets)
self.assertAllClose(reg_weights_out, exp_reg_weights)
示例5: test_batch_assign_targets
# 需要导入模块: from object_detection.core import target_assigner [as 别名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 别名]
def test_batch_assign_targets(self):
box_list1 = box_list.BoxList(tf.constant([[0., 0., 0.2, 0.2]]))
box_list2 = box_list.BoxList(tf.constant(
[[0, 0.25123152, 1, 1],
[0.015789, 0.0985, 0.55789, 0.3842]]
))
gt_box_batch = [box_list1, box_list2]
gt_class_targets = [None, None]
prior_means = tf.constant([[0, 0, .25, .25],
[0, .25, 1, 1],
[0, .1, .5, .5],
[.75, .75, 1, 1]])
prior_stddevs = tf.constant([[.1, .1, .1, .1],
[.1, .1, .1, .1],
[.1, .1, .1, .1],
[.1, .1, .1, .1]])
priors = box_list.BoxList(prior_means)
priors.add_field('stddev', prior_stddevs)
exp_reg_targets = [[[0, 0, -0.5, -0.5],
[0, 0, 0, 0],
[0, 0, 0, 0,],
[0, 0, 0, 0,],],
[[0, 0, 0, 0,],
[0, 0.01231521, 0, 0],
[0.15789001, -0.01500003, 0.57889998, -1.15799987],
[0, 0, 0, 0]]]
exp_cls_weights = [[1, 1, 1, 1],
[1, 1, 1, 1]]
exp_cls_targets = [[[1], [0], [0], [0]],
[[0], [1], [1], [0]]]
exp_reg_weights = [[1, 0, 0, 0],
[0, 1, 1, 0]]
exp_match_0 = [0]
exp_match_1 = [1, 2]
agnostic_target_assigner = self._get_agnostic_target_assigner()
(cls_targets, cls_weights, reg_targets, reg_weights,
match_list) = targetassigner.batch_assign_targets(
agnostic_target_assigner, priors, gt_box_batch, gt_class_targets)
self.assertTrue(isinstance(match_list, list) and len(match_list) == 2)
with self.test_session() as sess:
(cls_targets_out, cls_weights_out, reg_targets_out, reg_weights_out,
match_out_0, match_out_1) = sess.run([
cls_targets, cls_weights, reg_targets, reg_weights] + [
match.matched_column_indices() for match in match_list])
self.assertAllClose(cls_targets_out, exp_cls_targets)
self.assertAllClose(cls_weights_out, exp_cls_weights)
self.assertAllClose(reg_targets_out, exp_reg_targets)
self.assertAllClose(reg_weights_out, exp_reg_weights)
self.assertAllClose(match_out_0, exp_match_0)
self.assertAllClose(match_out_1, exp_match_1)
示例6: test_batch_assign_empty_groundtruth
# 需要导入模块: from object_detection.core import target_assigner [as 别名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 别名]
def test_batch_assign_empty_groundtruth(self):
box_coords_expanded = tf.zeros((1, 4), tf.float32)
box_coords = tf.slice(box_coords_expanded, [0, 0], [0, 4])
box_list1 = box_list.BoxList(box_coords)
gt_box_batch = [box_list1]
prior_means = tf.constant([[0, 0, .25, .25],
[0, .25, 1, 1]])
prior_stddevs = tf.constant([[.1, .1, .1, .1],
[.1, .1, .1, .1]])
priors = box_list.BoxList(prior_means)
priors.add_field('stddev', prior_stddevs)
exp_reg_targets = [[[0, 0, 0, 0],
[0, 0, 0, 0]]]
exp_cls_weights = [[1, 1]]
exp_cls_targets = [[[1, 0, 0, 0],
[1, 0, 0, 0]]]
exp_reg_weights = [[0, 0]]
exp_match_0 = []
num_classes = 3
pad = 1
gt_class_targets = tf.zeros((0, num_classes + pad))
gt_class_targets_batch = [gt_class_targets]
multiclass_target_assigner = self._get_multi_class_target_assigner(
num_classes=3)
(cls_targets, cls_weights, reg_targets, reg_weights,
match_list) = targetassigner.batch_assign_targets(
multiclass_target_assigner, priors,
gt_box_batch, gt_class_targets_batch)
self.assertTrue(isinstance(match_list, list) and len(match_list) == 1)
with self.test_session() as sess:
(cls_targets_out, cls_weights_out, reg_targets_out, reg_weights_out,
match_out_0) = sess.run([
cls_targets, cls_weights, reg_targets, reg_weights] + [
match.matched_column_indices() for match in match_list])
self.assertAllClose(cls_targets_out, exp_cls_targets)
self.assertAllClose(cls_weights_out, exp_cls_weights)
self.assertAllClose(reg_targets_out, exp_reg_targets)
self.assertAllClose(reg_weights_out, exp_reg_weights)
self.assertAllClose(match_out_0, exp_match_0)
示例7: _assign_targets
# 需要导入模块: from object_detection.core import target_assigner [as 别名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 别名]
def _assign_targets(self, groundtruth_boxes_list, groundtruth_classes_list,
groundtruth_keypoints_list=None,
groundtruth_weights_list=None):
"""Assign groundtruth targets.
Adds a background class to each one-hot encoding of groundtruth classes
and uses target assigner to obtain regression and classification targets.
Args:
groundtruth_boxes_list: a list of 2-D tensors of shape [num_boxes, 4]
containing coordinates of the groundtruth boxes.
Groundtruth boxes are provided in [y_min, x_min, y_max, x_max]
format and assumed to be normalized and clipped
relative to the image window with y_min <= y_max and x_min <= x_max.
groundtruth_classes_list: a list of 2-D one-hot (or k-hot) tensors of
shape [num_boxes, num_classes] containing the class targets with the 0th
index assumed to map to the first non-background class.
groundtruth_keypoints_list: (optional) a list of 3-D tensors of shape
[num_boxes, num_keypoints, 2]
groundtruth_weights_list: A list of 1-D tf.float32 tensors of shape
[num_boxes] containing weights for groundtruth boxes.
Returns:
batch_cls_targets: a tensor with shape [batch_size, num_anchors,
num_classes],
batch_cls_weights: a tensor with shape [batch_size, num_anchors],
batch_reg_targets: a tensor with shape [batch_size, num_anchors,
box_code_dimension]
batch_reg_weights: a tensor with shape [batch_size, num_anchors],
match_list: a list of matcher.Match objects encoding the match between
anchors and groundtruth boxes for each image of the batch,
with rows of the Match objects corresponding to groundtruth boxes
and columns corresponding to anchors.
"""
groundtruth_boxlists = [
box_list.BoxList(boxes) for boxes in groundtruth_boxes_list
]
if self._add_background_class:
groundtruth_classes_with_background_list = [
tf.pad(one_hot_encoding, [[0, 0], [1, 0]], mode='CONSTANT')
for one_hot_encoding in groundtruth_classes_list
]
else:
groundtruth_classes_with_background_list = groundtruth_classes_list
if groundtruth_keypoints_list is not None:
for boxlist, keypoints in zip(
groundtruth_boxlists, groundtruth_keypoints_list):
boxlist.add_field(fields.BoxListFields.keypoints, keypoints)
return target_assigner.batch_assign_targets(
self._target_assigner, self.anchors, groundtruth_boxlists,
groundtruth_classes_with_background_list, self._unmatched_class_label,
groundtruth_weights_list)
示例8: test_batch_assign_targets
# 需要导入模块: from object_detection.core import target_assigner [as 别名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 别名]
def test_batch_assign_targets(self):
def graph_fn(anchor_means, groundtruth_boxlist1, groundtruth_boxlist2):
box_list1 = box_list.BoxList(groundtruth_boxlist1)
box_list2 = box_list.BoxList(groundtruth_boxlist2)
gt_box_batch = [box_list1, box_list2]
gt_class_targets = [None, None]
anchors_boxlist = box_list.BoxList(anchor_means)
agnostic_target_assigner = self._get_target_assigner()
(cls_targets, cls_weights, reg_targets, reg_weights,
_) = targetassigner.batch_assign_targets(
agnostic_target_assigner, anchors_boxlist, gt_box_batch,
gt_class_targets)
return (cls_targets, cls_weights, reg_targets, reg_weights)
groundtruth_boxlist1 = np.array([[0., 0., 0.2, 0.2]], dtype=np.float32)
groundtruth_boxlist2 = np.array([[0, 0.25123152, 1, 1],
[0.015789, 0.0985, 0.55789, 0.3842]],
dtype=np.float32)
anchor_means = np.array([[0, 0, .25, .25],
[0, .25, 1, 1],
[0, .1, .5, .5],
[.75, .75, 1, 1]], dtype=np.float32)
exp_cls_targets = [[[1], [0], [0], [0]],
[[0], [1], [1], [0]]]
exp_cls_weights = [[[1], [1], [1], [1]],
[[1], [1], [1], [1]]]
exp_reg_targets = [[[0, 0, -0.5, -0.5],
[0, 0, 0, 0],
[0, 0, 0, 0,],
[0, 0, 0, 0,],],
[[0, 0, 0, 0,],
[0, 0.01231521, 0, 0],
[0.15789001, -0.01500003, 0.57889998, -1.15799987],
[0, 0, 0, 0]]]
exp_reg_weights = [[1, 0, 0, 0],
[0, 1, 1, 0]]
(cls_targets_out,
cls_weights_out, reg_targets_out, reg_weights_out) = self.execute(
graph_fn, [anchor_means, groundtruth_boxlist1, groundtruth_boxlist2])
self.assertAllClose(cls_targets_out, exp_cls_targets)
self.assertAllClose(cls_weights_out, exp_cls_weights)
self.assertAllClose(reg_targets_out, exp_reg_targets)
self.assertAllClose(reg_weights_out, exp_reg_weights)
示例9: _assign_targets
# 需要导入模块: from object_detection.core import target_assigner [as 别名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 别名]
def _assign_targets(self, groundtruth_boxes_list, groundtruth_classes_list,
groundtruth_keypoints_list=None,
groundtruth_weights_list=None):
"""Assign groundtruth targets.
Adds a background class to each one-hot encoding of groundtruth classes
and uses target assigner to obtain regression and classification targets.
Args:
groundtruth_boxes_list: a list of 2-D tensors of shape [num_boxes, 4]
containing coordinates of the groundtruth boxes.
Groundtruth boxes are provided in [y_min, x_min, y_max, x_max]
format and assumed to be normalized and clipped
relative to the image window with y_min <= y_max and x_min <= x_max.
groundtruth_classes_list: a list of 2-D one-hot (or k-hot) tensors of
shape [num_boxes, num_classes] containing the class targets with the 0th
index assumed to map to the first non-background class.
groundtruth_keypoints_list: (optional) a list of 3-D tensors of shape
[num_boxes, num_keypoints, 2]
groundtruth_weights_list: A list of 1-D tf.float32 tensors of shape
[num_boxes] containing weights for groundtruth boxes.
Returns:
batch_cls_targets: a tensor with shape [batch_size, num_anchors,
num_classes],
batch_cls_weights: a tensor with shape [batch_size, num_anchors],
batch_reg_targets: a tensor with shape [batch_size, num_anchors,
box_code_dimension]
batch_reg_weights: a tensor with shape [batch_size, num_anchors],
match_list: a list of matcher.Match objects encoding the match between
anchors and groundtruth boxes for each image of the batch,
with rows of the Match objects corresponding to groundtruth boxes
and columns corresponding to anchors.
"""
groundtruth_boxlists = [
box_list.BoxList(boxes) for boxes in groundtruth_boxes_list
]
groundtruth_classes_with_background_list = [
tf.pad(one_hot_encoding, [[0, 0], [1, 0]], mode='CONSTANT')
for one_hot_encoding in groundtruth_classes_list
]
if groundtruth_keypoints_list is not None:
for boxlist, keypoints in zip(
groundtruth_boxlists, groundtruth_keypoints_list):
boxlist.add_field(fields.BoxListFields.keypoints, keypoints)
return target_assigner.batch_assign_targets(
self._target_assigner, self.anchors, groundtruth_boxlists,
groundtruth_classes_with_background_list, groundtruth_weights_list)
示例10: test_batch_assign_targets
# 需要导入模块: from object_detection.core import target_assigner [as 别名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 别名]
def test_batch_assign_targets(self):
def graph_fn(anchor_means, anchor_stddevs, groundtruth_boxlist1,
groundtruth_boxlist2):
box_list1 = box_list.BoxList(groundtruth_boxlist1)
box_list2 = box_list.BoxList(groundtruth_boxlist2)
gt_box_batch = [box_list1, box_list2]
gt_class_targets = [None, None]
anchors_boxlist = box_list.BoxList(anchor_means)
anchors_boxlist.add_field('stddev', anchor_stddevs)
agnostic_target_assigner = self._get_agnostic_target_assigner()
(cls_targets, cls_weights, reg_targets, reg_weights,
_) = targetassigner.batch_assign_targets(
agnostic_target_assigner, anchors_boxlist, gt_box_batch,
gt_class_targets)
return (cls_targets, cls_weights, reg_targets, reg_weights)
groundtruth_boxlist1 = np.array([[0., 0., 0.2, 0.2]], dtype=np.float32)
groundtruth_boxlist2 = np.array([[0, 0.25123152, 1, 1],
[0.015789, 0.0985, 0.55789, 0.3842]],
dtype=np.float32)
anchor_means = np.array([[0, 0, .25, .25],
[0, .25, 1, 1],
[0, .1, .5, .5],
[.75, .75, 1, 1]], dtype=np.float32)
anchor_stddevs = np.array([[.1, .1, .1, .1],
[.1, .1, .1, .1],
[.1, .1, .1, .1],
[.1, .1, .1, .1]], dtype=np.float32)
exp_reg_targets = [[[0, 0, -0.5, -0.5],
[0, 0, 0, 0],
[0, 0, 0, 0,],
[0, 0, 0, 0,],],
[[0, 0, 0, 0,],
[0, 0.01231521, 0, 0],
[0.15789001, -0.01500003, 0.57889998, -1.15799987],
[0, 0, 0, 0]]]
exp_cls_weights = [[1, 1, 1, 1],
[1, 1, 1, 1]]
exp_cls_targets = [[[1], [0], [0], [0]],
[[0], [1], [1], [0]]]
exp_reg_weights = [[1, 0, 0, 0],
[0, 1, 1, 0]]
(cls_targets_out, cls_weights_out, reg_targets_out,
reg_weights_out) = self.execute(graph_fn, [anchor_means, anchor_stddevs,
groundtruth_boxlist1,
groundtruth_boxlist2])
self.assertAllClose(cls_targets_out, exp_cls_targets)
self.assertAllClose(cls_weights_out, exp_cls_weights)
self.assertAllClose(reg_targets_out, exp_reg_targets)
self.assertAllClose(reg_weights_out, exp_reg_weights)
示例11: test_batch_assign_empty_groundtruth
# 需要导入模块: from object_detection.core import target_assigner [as 别名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 别名]
def test_batch_assign_empty_groundtruth(self):
def graph_fn(anchor_means, anchor_stddevs, groundtruth_box_corners,
gt_class_targets):
groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners)
gt_box_batch = [groundtruth_boxlist]
gt_class_targets_batch = [gt_class_targets]
anchors_boxlist = box_list.BoxList(anchor_means)
anchors_boxlist.add_field('stddev', anchor_stddevs)
multiclass_target_assigner = self._get_multi_class_target_assigner(
num_classes=3)
(cls_targets, cls_weights, reg_targets, reg_weights,
_) = targetassigner.batch_assign_targets(
multiclass_target_assigner, anchors_boxlist,
gt_box_batch, gt_class_targets_batch)
return (cls_targets, cls_weights, reg_targets, reg_weights)
groundtruth_box_corners = np.zeros((0, 4), dtype=np.float32)
anchor_means = np.array([[0, 0, .25, .25],
[0, .25, 1, 1]], dtype=np.float32)
anchor_stddevs = np.array([[.1, .1, .1, .1],
[.1, .1, .1, .1]], dtype=np.float32)
exp_reg_targets = [[[0, 0, 0, 0],
[0, 0, 0, 0]]]
exp_cls_weights = [[1, 1]]
exp_cls_targets = [[[1, 0, 0, 0],
[1, 0, 0, 0]]]
exp_reg_weights = [[0, 0]]
num_classes = 3
pad = 1
gt_class_targets = np.zeros((0, num_classes + pad), dtype=np.float32)
(cls_targets_out, cls_weights_out, reg_targets_out,
reg_weights_out) = self.execute(
graph_fn, [anchor_means, anchor_stddevs, groundtruth_box_corners,
gt_class_targets])
self.assertAllClose(cls_targets_out, exp_cls_targets)
self.assertAllClose(cls_weights_out, exp_cls_weights)
self.assertAllClose(reg_targets_out, exp_reg_targets)
self.assertAllClose(reg_weights_out, exp_reg_weights)
示例12: _assign_targets
# 需要导入模块: from object_detection.core import target_assigner [as 别名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 别名]
def _assign_targets(self, groundtruth_boxes_list, groundtruth_classes_list,
groundtruth_keypoints_list=None,
groundtruth_weights_list=None):
"""Assign groundtruth targets.
Adds a background class to each one-hot encoding of groundtruth classes
and uses target assigner to obtain regression and classification targets.
Args:
groundtruth_boxes_list: a list of 2-D tensors of shape [num_boxes, 4]
containing coordinates of the groundtruth boxes.
Groundtruth boxes are provided in [y_min, x_min, y_max, x_max]
format and assumed to be normalized and clipped
relative to the image window with y_min <= y_max and x_min <= x_max.
groundtruth_classes_list: a list of 2-D one-hot (or k-hot) tensors of
shape [num_boxes, num_classes] containing the class targets with the 0th
index assumed to map to the first non-background class.
groundtruth_keypoints_list: (optional) a list of 3-D tensors of shape
[num_boxes, num_keypoints, 2]
groundtruth_weights_list: A list of 1-D tf.float32 tensors of shape
[num_boxes] containing weights for groundtruth boxes.
Returns:
batch_cls_targets: a tensor with shape [batch_size, num_anchors,
num_classes],
batch_cls_weights: a tensor with shape [batch_size, num_anchors],
batch_reg_targets: a tensor with shape [batch_size, num_anchors,
box_code_dimension]
batch_reg_weights: a tensor with shape [batch_size, num_anchors],
match_list: a list of matcher.Match objects encoding the match between
anchors and groundtruth boxes for each image of the batch,
with rows of the Match objects corresponding to groundtruth boxes
and columns corresponding to anchors.
"""
groundtruth_boxlists = [
box_list.BoxList(boxes) for boxes in groundtruth_boxes_list
]
if self._add_background_class:
groundtruth_classes_with_background_list = [
tf.pad(one_hot_encoding, [[0, 0], [1, 0]], mode='CONSTANT')
for one_hot_encoding in groundtruth_classes_list
]
else:
groundtruth_classes_with_background_list = groundtruth_classes_list
if groundtruth_keypoints_list is not None:
for boxlist, keypoints in zip(
groundtruth_boxlists, groundtruth_keypoints_list):
boxlist.add_field(fields.BoxListFields.keypoints, keypoints)
return target_assigner.batch_assign_targets(
self._target_assigner, self.anchors, groundtruth_boxlists,
groundtruth_classes_with_background_list, groundtruth_weights_list)
示例13: test_batch_assign_targets
# 需要导入模块: from object_detection.core import target_assigner [as 别名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 别名]
def test_batch_assign_targets(self):
def graph_fn(anchor_means, groundtruth_boxlist1, groundtruth_boxlist2):
box_list1 = box_list.BoxList(groundtruth_boxlist1)
box_list2 = box_list.BoxList(groundtruth_boxlist2)
gt_box_batch = [box_list1, box_list2]
gt_class_targets = [None, None]
anchors_boxlist = box_list.BoxList(anchor_means)
agnostic_target_assigner = self._get_agnostic_target_assigner()
(cls_targets, cls_weights, reg_targets, reg_weights,
_) = targetassigner.batch_assign_targets(
agnostic_target_assigner, anchors_boxlist, gt_box_batch,
gt_class_targets)
return (cls_targets, cls_weights, reg_targets, reg_weights)
groundtruth_boxlist1 = np.array([[0., 0., 0.2, 0.2]], dtype=np.float32)
groundtruth_boxlist2 = np.array([[0, 0.25123152, 1, 1],
[0.015789, 0.0985, 0.55789, 0.3842]],
dtype=np.float32)
anchor_means = np.array([[0, 0, .25, .25],
[0, .25, 1, 1],
[0, .1, .5, .5],
[.75, .75, 1, 1]], dtype=np.float32)
exp_reg_targets = [[[0, 0, -0.5, -0.5],
[0, 0, 0, 0],
[0, 0, 0, 0,],
[0, 0, 0, 0,],],
[[0, 0, 0, 0,],
[0, 0.01231521, 0, 0],
[0.15789001, -0.01500003, 0.57889998, -1.15799987],
[0, 0, 0, 0]]]
exp_cls_weights = [[1, 1, 1, 1],
[1, 1, 1, 1]]
exp_cls_targets = [[[1], [0], [0], [0]],
[[0], [1], [1], [0]]]
exp_reg_weights = [[1, 0, 0, 0],
[0, 1, 1, 0]]
(cls_targets_out,
cls_weights_out, reg_targets_out, reg_weights_out) = self.execute(
graph_fn, [anchor_means, groundtruth_boxlist1, groundtruth_boxlist2])
self.assertAllClose(cls_targets_out, exp_cls_targets)
self.assertAllClose(cls_weights_out, exp_cls_weights)
self.assertAllClose(reg_targets_out, exp_reg_targets)
self.assertAllClose(reg_weights_out, exp_reg_weights)
示例14: test_batch_assign_multiclass_targets
# 需要导入模块: from object_detection.core import target_assigner [as 别名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 别名]
def test_batch_assign_multiclass_targets(self):
def graph_fn(anchor_means, groundtruth_boxlist1, groundtruth_boxlist2,
class_targets1, class_targets2):
box_list1 = box_list.BoxList(groundtruth_boxlist1)
box_list2 = box_list.BoxList(groundtruth_boxlist2)
gt_box_batch = [box_list1, box_list2]
gt_class_targets = [class_targets1, class_targets2]
anchors_boxlist = box_list.BoxList(anchor_means)
multiclass_target_assigner = self._get_multi_class_target_assigner(
num_classes=3)
(cls_targets, cls_weights, reg_targets, reg_weights,
_) = targetassigner.batch_assign_targets(
multiclass_target_assigner, anchors_boxlist, gt_box_batch,
gt_class_targets)
return (cls_targets, cls_weights, reg_targets, reg_weights)
groundtruth_boxlist1 = np.array([[0., 0., 0.2, 0.2]], dtype=np.float32)
groundtruth_boxlist2 = np.array([[0, 0.25123152, 1, 1],
[0.015789, 0.0985, 0.55789, 0.3842]],
dtype=np.float32)
class_targets1 = np.array([[0, 1, 0, 0]], dtype=np.float32)
class_targets2 = np.array([[0, 0, 0, 1],
[0, 0, 1, 0]], dtype=np.float32)
anchor_means = np.array([[0, 0, .25, .25],
[0, .25, 1, 1],
[0, .1, .5, .5],
[.75, .75, 1, 1]], dtype=np.float32)
exp_reg_targets = [[[0, 0, -0.5, -0.5],
[0, 0, 0, 0],
[0, 0, 0, 0,],
[0, 0, 0, 0,],],
[[0, 0, 0, 0,],
[0, 0.01231521, 0, 0],
[0.15789001, -0.01500003, 0.57889998, -1.15799987],
[0, 0, 0, 0]]]
exp_cls_weights = [[1, 1, 1, 1],
[1, 1, 1, 1]]
exp_cls_targets = [[[0, 1, 0, 0],
[1, 0, 0, 0],
[1, 0, 0, 0],
[1, 0, 0, 0]],
[[1, 0, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 0],
[1, 0, 0, 0]]]
exp_reg_weights = [[1, 0, 0, 0],
[0, 1, 1, 0]]
(cls_targets_out, cls_weights_out, reg_targets_out,
reg_weights_out) = self.execute(graph_fn, [
anchor_means, groundtruth_boxlist1, groundtruth_boxlist2,
class_targets1, class_targets2
])
self.assertAllClose(cls_targets_out, exp_cls_targets)
self.assertAllClose(cls_weights_out, exp_cls_weights)
self.assertAllClose(reg_targets_out, exp_reg_targets)
self.assertAllClose(reg_weights_out, exp_reg_weights)