本文整理汇总了Python中object_detection.core.region_similarity_calculator.NegSqDistSimilarity方法的典型用法代码示例。如果您正苦于以下问题:Python region_similarity_calculator.NegSqDistSimilarity方法的具体用法?Python region_similarity_calculator.NegSqDistSimilarity怎么用?Python region_similarity_calculator.NegSqDistSimilarity使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类object_detection.core.region_similarity_calculator
的用法示例。
在下文中一共展示了region_similarity_calculator.NegSqDistSimilarity方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_raises_error_on_invalid_groundtruth_labels
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import NegSqDistSimilarity [as 别名]
def test_raises_error_on_invalid_groundtruth_labels(self):
similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
matcher = bipartite_matcher.GreedyBipartiteMatcher()
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=1.0)
unmatched_class_label = tf.constant([[0, 0], [0, 0], [0, 0]], tf.float32)
target_assigner = targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder)
prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5]])
priors = box_list.BoxList(prior_means)
box_corners = [[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.9, 0.9],
[.75, 0, .95, .27]]
boxes = box_list.BoxList(tf.constant(box_corners))
groundtruth_labels = tf.constant([[[0, 1], [1, 0]]], tf.float32)
with self.assertRaises(ValueError):
target_assigner.assign(
priors,
boxes,
groundtruth_labels,
unmatched_class_label=unmatched_class_label)
示例2: test_raises_error_on_invalid_groundtruth_labels
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import NegSqDistSimilarity [as 别名]
def test_raises_error_on_invalid_groundtruth_labels(self):
similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
matcher = bipartite_matcher.GreedyBipartiteMatcher()
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
unmatched_cls_target = tf.constant([[0, 0], [0, 0], [0, 0]], tf.float32)
target_assigner = targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder,
unmatched_cls_target=unmatched_cls_target)
prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5]])
prior_stddevs = tf.constant([[1.0, 1.0, 1.0, 1.0]])
priors = box_list.BoxList(prior_means)
priors.add_field('stddev', prior_stddevs)
box_corners = [[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.9, 0.9],
[.75, 0, .95, .27]]
boxes = box_list.BoxList(tf.constant(box_corners))
groundtruth_labels = tf.constant([[[0, 1], [1, 0]]], tf.float32)
with self.assertRaises(ValueError):
target_assigner.assign(priors, boxes, groundtruth_labels,
num_valid_rows=3)
示例3: test_raises_error_on_invalid_groundtruth_labels
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import NegSqDistSimilarity [as 别名]
def test_raises_error_on_invalid_groundtruth_labels(self):
similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
matcher = bipartite_matcher.GreedyBipartiteMatcher()
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=1.0)
unmatched_cls_target = tf.constant([[0, 0], [0, 0], [0, 0]], tf.float32)
target_assigner = targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder,
unmatched_cls_target=unmatched_cls_target)
prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5]])
priors = box_list.BoxList(prior_means)
box_corners = [[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.9, 0.9],
[.75, 0, .95, .27]]
boxes = box_list.BoxList(tf.constant(box_corners))
groundtruth_labels = tf.constant([[[0, 1], [1, 0]]], tf.float32)
with self.assertRaises(ValueError):
target_assigner.assign(priors, boxes, groundtruth_labels,
num_valid_rows=3)
示例4: test_raises_error_on_invalid_groundtruth_labels
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import NegSqDistSimilarity [as 别名]
def test_raises_error_on_invalid_groundtruth_labels(self):
similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
matcher = bipartite_matcher.GreedyBipartiteMatcher()
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
unmatched_cls_target = tf.constant([[0, 0], [0, 0], [0, 0]], tf.float32)
target_assigner = targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder,
unmatched_cls_target=unmatched_cls_target)
prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5]])
prior_stddevs = tf.constant([[1.0, 1.0, 1.0, 1.0]])
priors = box_list.BoxList(prior_means)
priors.add_field('stddev', prior_stddevs)
box_corners = [[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.9, 0.9],
[.75, 0, .95, .27]]
boxes = box_list.BoxList(tf.constant(box_corners))
groundtruth_labels = tf.constant([[[0, 1], [1, 0]]], tf.float32)
with self.assertRaises(ValueError):
target_assigner.assign(priors, boxes, groundtruth_labels,
num_valid_rows=3)
示例5: test_assign_multiclass_unequal_class_weights
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import NegSqDistSimilarity [as 别名]
def test_assign_multiclass_unequal_class_weights(self):
similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
matcher = bipartite_matcher.GreedyBipartiteMatcher()
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
unmatched_cls_target = tf.constant([1, 0, 0, 0, 0, 0, 0], tf.float32)
target_assigner = targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder,
positive_class_weight=1.0, negative_class_weight=0.5,
unmatched_cls_target=unmatched_cls_target)
prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 1.0, 0.8],
[0, 0.5, .5, 1.0],
[.75, 0, 1.0, .25]])
prior_stddevs = tf.constant(4 * [4 * [.1]])
priors = box_list.BoxList(prior_means)
priors.add_field('stddev', prior_stddevs)
box_corners = [[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.9, 0.9],
[.75, 0, .95, .27]]
boxes = box_list.BoxList(tf.constant(box_corners))
groundtruth_labels = tf.constant([[0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 1, 0, 0, 0]], tf.float32)
exp_cls_weights = [1, 1, .5, 1]
result = target_assigner.assign(priors, boxes, groundtruth_labels,
num_valid_rows=3)
(_, cls_weights, _, _, _) = result
with self.test_session() as sess:
cls_weights_out = sess.run(cls_weights)
self.assertAllClose(cls_weights_out, exp_cls_weights)
示例6: _get_agnostic_target_assigner
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import NegSqDistSimilarity [as 别名]
def _get_agnostic_target_assigner(self):
similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
matcher = bipartite_matcher.GreedyBipartiteMatcher()
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
return targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder,
positive_class_weight=1.0,
negative_class_weight=1.0,
unmatched_cls_target=None)
示例7: _get_multi_class_target_assigner
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import NegSqDistSimilarity [as 别名]
def _get_multi_class_target_assigner(self, num_classes):
similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
matcher = bipartite_matcher.GreedyBipartiteMatcher()
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
unmatched_cls_target = tf.constant([1] + num_classes * [0], tf.float32)
return targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder,
positive_class_weight=1.0,
negative_class_weight=1.0,
unmatched_cls_target=unmatched_cls_target)
示例8: _get_multi_dimensional_target_assigner
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import NegSqDistSimilarity [as 别名]
def _get_multi_dimensional_target_assigner(self, target_dimensions):
similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
matcher = bipartite_matcher.GreedyBipartiteMatcher()
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
unmatched_cls_target = tf.constant(np.zeros(target_dimensions),
tf.float32)
return targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder,
positive_class_weight=1.0,
negative_class_weight=1.0,
unmatched_cls_target=unmatched_cls_target)
示例9: test_get_correct_pairwise_similarity_based_on_squared_distances
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import NegSqDistSimilarity [as 别名]
def test_get_correct_pairwise_similarity_based_on_squared_distances(self):
corners1 = tf.constant([[0.0, 0.0, 0.0, 0.0],
[1.0, 1.0, 0.0, 2.0]])
corners2 = tf.constant([[3.0, 4.0, 1.0, 0.0],
[-4.0, 0.0, 0.0, 3.0],
[0.0, 0.0, 0.0, 0.0]])
exp_output = [[-26, -25, 0], [-18, -27, -6]]
boxes1 = box_list.BoxList(corners1)
boxes2 = box_list.BoxList(corners2)
dist_similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
dist_similarity = dist_similarity_calc.compare(boxes1, boxes2)
with self.test_session() as sess:
dist_output = sess.run(dist_similarity)
self.assertAllClose(dist_output, exp_output)
示例10: build
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import NegSqDistSimilarity [as 别名]
def build(region_similarity_calculator_config):
"""Builds region similarity calculator based on the configuration.
Builds one of [IouSimilarity, IoaSimilarity, NegSqDistSimilarity] objects. See
core/region_similarity_calculator.proto for details.
Args:
region_similarity_calculator_config: RegionSimilarityCalculator
configuration proto.
Returns:
region_similarity_calculator: RegionSimilarityCalculator object.
Raises:
ValueError: On unknown region similarity calculator.
"""
if not isinstance(
region_similarity_calculator_config,
region_similarity_calculator_pb2.RegionSimilarityCalculator):
raise ValueError(
'region_similarity_calculator_config not of type '
'region_similarity_calculator_pb2.RegionsSimilarityCalculator')
similarity_calculator = region_similarity_calculator_config.WhichOneof(
'region_similarity')
if similarity_calculator == 'iou_similarity':
return region_similarity_calculator.IouSimilarity()
if similarity_calculator == 'ioa_similarity':
return region_similarity_calculator.IoaSimilarity()
if similarity_calculator == 'neg_sq_dist_similarity':
return region_similarity_calculator.NegSqDistSimilarity()
raise ValueError('Unknown region similarity calculator.')
示例11: test_raises_error_on_incompatible_groundtruth_boxes_and_labels
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import NegSqDistSimilarity [as 别名]
def test_raises_error_on_incompatible_groundtruth_boxes_and_labels(self):
similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
matcher = bipartite_matcher.GreedyBipartiteMatcher()
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
unmatched_class_label = tf.constant([1, 0, 0, 0, 0, 0, 0], tf.float32)
target_assigner = targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder)
prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 1.0, 0.8],
[0, 0.5, .5, 1.0],
[.75, 0, 1.0, .25]])
priors = box_list.BoxList(prior_means)
box_corners = [[0.0, 0.0, 0.5, 0.5],
[0.0, 0.0, 0.5, 0.8],
[0.5, 0.5, 0.9, 0.9],
[.75, 0, .95, .27]]
boxes = box_list.BoxList(tf.constant(box_corners))
groundtruth_labels = tf.constant([[0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 1, 0, 0, 0]], tf.float32)
with self.assertRaisesRegexp(ValueError, 'Unequal shapes'):
target_assigner.assign(
priors,
boxes,
groundtruth_labels,
unmatched_class_label=unmatched_class_label)
示例12: build
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import NegSqDistSimilarity [as 别名]
def build(region_similarity_calculator_config):
"""Builds region similarity calculator based on the configuration.
Builds one of [IouSimilarity, IoaSimilarity, NegSqDistSimilarity] objects. See
core/region_similarity_calculator.proto for details.
Args:
region_similarity_calculator_config: RegionSimilarityCalculator
configuration proto.
Returns:
region_similarity_calculator: RegionSimilarityCalculator object.
Raises:
ValueError: On unknown region similarity calculator.
"""
if not isinstance(
region_similarity_calculator_config,
region_similarity_calculator_pb2.RegionSimilarityCalculator):
raise ValueError(
'region_similarity_calculator_config not of type '
'region_similarity_calculator_pb2.RegionsSimilarityCalculator')
similarity_calculator = region_similarity_calculator_config.WhichOneof(
'region_similarity')
if similarity_calculator == 'iou_similarity':
return region_similarity_calculator.IouSimilarity()
if similarity_calculator == 'ioa_similarity':
return region_similarity_calculator.IoaSimilarity()
if similarity_calculator == 'neg_sq_dist_similarity':
return region_similarity_calculator.NegSqDistSimilarity()
if similarity_calculator == 'thresholded_iou_similarity':
return region_similarity_calculator.ThresholdedIouSimilarity(
region_similarity_calculator_config.thresholded_iou_similarity.threshold
)
raise ValueError('Unknown region similarity calculator.')
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:40,代码来源:region_similarity_calculator_builder.py
示例13: test_raises_error_on_incompatible_groundtruth_boxes_and_labels
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import NegSqDistSimilarity [as 别名]
def test_raises_error_on_incompatible_groundtruth_boxes_and_labels(self):
similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
matcher = bipartite_matcher.GreedyBipartiteMatcher()
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
unmatched_cls_target = tf.constant([1, 0, 0, 0, 0, 0, 0], tf.float32)
target_assigner = targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder,
unmatched_cls_target=unmatched_cls_target)
prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 1.0, 0.8],
[0, 0.5, .5, 1.0],
[.75, 0, 1.0, .25]])
prior_stddevs = tf.constant(4 * [4 * [.1]])
priors = box_list.BoxList(prior_means)
priors.add_field('stddev', prior_stddevs)
box_corners = [[0.0, 0.0, 0.5, 0.5],
[0.0, 0.0, 0.5, 0.8],
[0.5, 0.5, 0.9, 0.9],
[.75, 0, .95, .27]]
boxes = box_list.BoxList(tf.constant(box_corners))
groundtruth_labels = tf.constant([[0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 1, 0, 0, 0]], tf.float32)
with self.assertRaisesRegexp(ValueError, 'Unequal shapes'):
target_assigner.assign(priors, boxes, groundtruth_labels,
num_valid_rows=3)
示例14: test_raises_error_on_incompatible_groundtruth_boxes_and_labels
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import NegSqDistSimilarity [as 别名]
def test_raises_error_on_incompatible_groundtruth_boxes_and_labels(self):
similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
matcher = bipartite_matcher.GreedyBipartiteMatcher()
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
unmatched_cls_target = tf.constant([1, 0, 0, 0, 0, 0, 0], tf.float32)
target_assigner = targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder,
unmatched_cls_target=unmatched_cls_target)
prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 1.0, 0.8],
[0, 0.5, .5, 1.0],
[.75, 0, 1.0, .25]])
priors = box_list.BoxList(prior_means)
box_corners = [[0.0, 0.0, 0.5, 0.5],
[0.0, 0.0, 0.5, 0.8],
[0.5, 0.5, 0.9, 0.9],
[.75, 0, .95, .27]]
boxes = box_list.BoxList(tf.constant(box_corners))
groundtruth_labels = tf.constant([[0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 1, 0, 0, 0]], tf.float32)
with self.assertRaisesRegexp(ValueError, 'Unequal shapes'):
target_assigner.assign(priors, boxes, groundtruth_labels,
num_valid_rows=3)