本文整理汇总了Python中object_detection.core.region_similarity_calculator.IouSimilarity方法的典型用法代码示例。如果您正苦于以下问题:Python region_similarity_calculator.IouSimilarity方法的具体用法?Python region_similarity_calculator.IouSimilarity怎么用?Python region_similarity_calculator.IouSimilarity使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类object_detection.core.region_similarity_calculator
的用法示例。
在下文中一共展示了region_similarity_calculator.IouSimilarity方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import IouSimilarity [as 别名]
def __init__(self):
similarity_calc = region_similarity_calculator.IouSimilarity()
matcher = argmax_matcher.ArgMaxMatcher(
matched_threshold=ssd_constants.MATCH_THRESHOLD,
unmatched_threshold=ssd_constants.MATCH_THRESHOLD,
negatives_lower_than_unmatched=True,
force_match_for_each_row=True)
box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder(
scale_factors=ssd_constants.BOX_CODER_SCALES)
self.default_boxes = DefaultBoxes()('ltrb')
self.default_boxes = box_list.BoxList(
tf.convert_to_tensor(self.default_boxes))
self.assigner = target_assigner.TargetAssigner(
similarity_calc, matcher, box_coder)
示例2: test_get_correct_pairwise_similarity_based_on_iou
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import IouSimilarity [as 别名]
def test_get_correct_pairwise_similarity_based_on_iou(self):
corners1 = tf.constant([[4.0, 3.0, 7.0, 5.0], [5.0, 6.0, 10.0, 7.0]])
corners2 = tf.constant([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0],
[0.0, 0.0, 20.0, 20.0]])
exp_output = [[2.0 / 16.0, 0, 6.0 / 400.0], [1.0 / 16.0, 0.0, 5.0 / 400.0]]
boxes1 = box_list.BoxList(corners1)
boxes2 = box_list.BoxList(corners2)
iou_similarity_calculator = region_similarity_calculator.IouSimilarity()
iou_similarity = iou_similarity_calculator.compare(boxes1, boxes2)
with self.test_session() as sess:
iou_output = sess.run(iou_similarity)
self.assertAllClose(iou_output, exp_output)
示例3: build
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import IouSimilarity [as 别名]
def build(region_similarity_calculator_config):
"""Builds region similarity calculator based on the configuration.
Builds one of [IouSimilarity, IoaSimilarity, NegSqDistSimilarity] objects. See
core/region_similarity_calculator.proto for details.
Args:
region_similarity_calculator_config: RegionSimilarityCalculator
configuration proto.
Returns:
region_similarity_calculator: RegionSimilarityCalculator object.
Raises:
ValueError: On unknown region similarity calculator.
"""
if not isinstance(
region_similarity_calculator_config,
region_similarity_calculator_pb2.RegionSimilarityCalculator):
raise ValueError(
'region_similarity_calculator_config not of type '
'region_similarity_calculator_pb2.RegionsSimilarityCalculator')
similarity_calculator = region_similarity_calculator_config.WhichOneof(
'region_similarity')
if similarity_calculator == 'iou_similarity':
return region_similarity_calculator.IouSimilarity()
if similarity_calculator == 'ioa_similarity':
return region_similarity_calculator.IoaSimilarity()
if similarity_calculator == 'neg_sq_dist_similarity':
return region_similarity_calculator.NegSqDistSimilarity()
raise ValueError('Unknown region similarity calculator.')
示例4: testBuildIouSimilarityCalculator
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import IouSimilarity [as 别名]
def testBuildIouSimilarityCalculator(self):
similarity_calc_text_proto = """
iou_similarity {
}
"""
similarity_calc_proto = sim_calc_pb2.RegionSimilarityCalculator()
text_format.Merge(similarity_calc_text_proto, similarity_calc_proto)
similarity_calc = region_similarity_calculator_builder.build(
similarity_calc_proto)
self.assertTrue(isinstance(similarity_calc,
region_similarity_calculator.IouSimilarity))
示例5: test_assign_agnostic
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import IouSimilarity [as 别名]
def test_assign_agnostic(self):
def graph_fn(anchor_means, groundtruth_box_corners):
similarity_calc = region_similarity_calculator.IouSimilarity()
matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
unmatched_threshold=0.5)
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1)
target_assigner = targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder)
anchors_boxlist = box_list.BoxList(anchor_means)
groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners)
result = target_assigner.assign(
anchors_boxlist, groundtruth_boxlist, unmatched_class_label=None)
(cls_targets, cls_weights, reg_targets, reg_weights, _) = result
return (cls_targets, cls_weights, reg_targets, reg_weights)
anchor_means = np.array([[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 1.0, 0.8],
[0, 0.5, .5, 1.0]], dtype=np.float32)
groundtruth_box_corners = np.array([[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.9, 0.9]],
dtype=np.float32)
exp_cls_targets = [[1], [1], [0]]
exp_cls_weights = [[1], [1], [1]]
exp_reg_targets = [[0, 0, 0, 0],
[0, 0, -1, 1],
[0, 0, 0, 0]]
exp_reg_weights = [1, 1, 0]
(cls_targets_out,
cls_weights_out, reg_targets_out, reg_weights_out) = self.execute(
graph_fn, [anchor_means, groundtruth_box_corners])
self.assertAllClose(cls_targets_out, exp_cls_targets)
self.assertAllClose(cls_weights_out, exp_cls_weights)
self.assertAllClose(reg_targets_out, exp_reg_targets)
self.assertAllClose(reg_weights_out, exp_reg_weights)
self.assertEquals(cls_targets_out.dtype, np.float32)
self.assertEquals(cls_weights_out.dtype, np.float32)
self.assertEquals(reg_targets_out.dtype, np.float32)
self.assertEquals(reg_weights_out.dtype, np.float32)
示例6: _get_target_assigner
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import IouSimilarity [as 别名]
def _get_target_assigner(self):
similarity_calc = region_similarity_calculator.IouSimilarity()
matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
unmatched_threshold=0.5)
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1)
return targetassigner.TargetAssigner(similarity_calc, matcher, box_coder)
示例7: build
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import IouSimilarity [as 别名]
def build(region_similarity_calculator_config):
"""Builds region similarity calculator based on the configuration.
Builds one of [IouSimilarity, IoaSimilarity, NegSqDistSimilarity] objects. See
core/region_similarity_calculator.proto for details.
Args:
region_similarity_calculator_config: RegionSimilarityCalculator
configuration proto.
Returns:
region_similarity_calculator: RegionSimilarityCalculator object.
Raises:
ValueError: On unknown region similarity calculator.
"""
if not isinstance(
region_similarity_calculator_config,
region_similarity_calculator_pb2.RegionSimilarityCalculator):
raise ValueError(
'region_similarity_calculator_config not of type '
'region_similarity_calculator_pb2.RegionsSimilarityCalculator')
similarity_calculator = region_similarity_calculator_config.WhichOneof(
'region_similarity')
if similarity_calculator == 'iou_similarity':
return region_similarity_calculator.IouSimilarity()
if similarity_calculator == 'ioa_similarity':
return region_similarity_calculator.IoaSimilarity()
if similarity_calculator == 'neg_sq_dist_similarity':
return region_similarity_calculator.NegSqDistSimilarity()
if similarity_calculator == 'thresholded_iou_similarity':
return region_similarity_calculator.ThresholdedIouSimilarity(
region_similarity_calculator_config.thresholded_iou_similarity.threshold
)
raise ValueError('Unknown region similarity calculator.')
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:40,代码来源:region_similarity_calculator_builder.py
示例8: test_assign_agnostic
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import IouSimilarity [as 别名]
def test_assign_agnostic(self):
def graph_fn(anchor_means, anchor_stddevs, groundtruth_box_corners):
similarity_calc = region_similarity_calculator.IouSimilarity()
matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
unmatched_threshold=0.5)
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
target_assigner = targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder, unmatched_cls_target=None)
anchors_boxlist = box_list.BoxList(anchor_means)
anchors_boxlist.add_field('stddev', anchor_stddevs)
groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners)
result = target_assigner.assign(anchors_boxlist, groundtruth_boxlist)
(cls_targets, cls_weights, reg_targets, reg_weights, _) = result
return (cls_targets, cls_weights, reg_targets, reg_weights)
anchor_means = np.array([[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 1.0, 0.8],
[0, 0.5, .5, 1.0]], dtype=np.float32)
anchor_stddevs = np.array(3 * [4 * [.1]], dtype=np.float32)
groundtruth_box_corners = np.array([[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.9, 0.9]],
dtype=np.float32)
exp_cls_targets = [[1], [1], [0]]
exp_cls_weights = [1, 1, 1]
exp_reg_targets = [[0, 0, 0, 0],
[0, 0, -1, 1],
[0, 0, 0, 0]]
exp_reg_weights = [1, 1, 0]
(cls_targets_out, cls_weights_out, reg_targets_out,
reg_weights_out) = self.execute(graph_fn, [anchor_means, anchor_stddevs,
groundtruth_box_corners])
self.assertAllClose(cls_targets_out, exp_cls_targets)
self.assertAllClose(cls_weights_out, exp_cls_weights)
self.assertAllClose(reg_targets_out, exp_reg_targets)
self.assertAllClose(reg_weights_out, exp_reg_weights)
self.assertEquals(cls_targets_out.dtype, np.float32)
self.assertEquals(cls_weights_out.dtype, np.float32)
self.assertEquals(reg_targets_out.dtype, np.float32)
self.assertEquals(reg_weights_out.dtype, np.float32)
示例9: _get_agnostic_target_assigner
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import IouSimilarity [as 别名]
def _get_agnostic_target_assigner(self):
similarity_calc = region_similarity_calculator.IouSimilarity()
matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
unmatched_threshold=0.5)
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
return targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder,
unmatched_cls_target=None)
示例10: _get_multi_dimensional_target_assigner
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import IouSimilarity [as 别名]
def _get_multi_dimensional_target_assigner(self, target_dimensions):
similarity_calc = region_similarity_calculator.IouSimilarity()
matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
unmatched_threshold=0.5)
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
unmatched_cls_target = tf.constant(np.zeros(target_dimensions),
tf.float32)
return targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder,
unmatched_cls_target=unmatched_cls_target)
示例11: test_assign_agnostic
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import IouSimilarity [as 别名]
def test_assign_agnostic(self):
def graph_fn(anchor_means, groundtruth_box_corners):
similarity_calc = region_similarity_calculator.IouSimilarity()
matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
unmatched_threshold=0.5)
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1)
target_assigner = targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder, unmatched_cls_target=None)
anchors_boxlist = box_list.BoxList(anchor_means)
groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners)
result = target_assigner.assign(anchors_boxlist, groundtruth_boxlist)
(cls_targets, cls_weights, reg_targets, reg_weights, _) = result
return (cls_targets, cls_weights, reg_targets, reg_weights)
anchor_means = np.array([[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 1.0, 0.8],
[0, 0.5, .5, 1.0]], dtype=np.float32)
groundtruth_box_corners = np.array([[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.9, 0.9]],
dtype=np.float32)
exp_cls_targets = [[1], [1], [0]]
exp_cls_weights = [1, 1, 1]
exp_reg_targets = [[0, 0, 0, 0],
[0, 0, -1, 1],
[0, 0, 0, 0]]
exp_reg_weights = [1, 1, 0]
(cls_targets_out,
cls_weights_out, reg_targets_out, reg_weights_out) = self.execute(
graph_fn, [anchor_means, groundtruth_box_corners])
self.assertAllClose(cls_targets_out, exp_cls_targets)
self.assertAllClose(cls_weights_out, exp_cls_weights)
self.assertAllClose(reg_targets_out, exp_reg_targets)
self.assertAllClose(reg_weights_out, exp_reg_weights)
self.assertEquals(cls_targets_out.dtype, np.float32)
self.assertEquals(cls_weights_out.dtype, np.float32)
self.assertEquals(reg_targets_out.dtype, np.float32)
self.assertEquals(reg_weights_out.dtype, np.float32)
示例12: test_assign_class_agnostic_with_ignored_matches
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import IouSimilarity [as 别名]
def test_assign_class_agnostic_with_ignored_matches(self):
# Note: test is very similar to above. The third box matched with an IOU
# of 0.35, which is between the matched and unmatched threshold. This means
# That like above the expected classification targets are [1, 1, 0].
# Unlike above, the third target is ignored and therefore expected
# classification weights are [1, 1, 0].
def graph_fn(anchor_means, groundtruth_box_corners):
similarity_calc = region_similarity_calculator.IouSimilarity()
matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
unmatched_threshold=0.3)
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1)
target_assigner = targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder, unmatched_cls_target=None)
anchors_boxlist = box_list.BoxList(anchor_means)
groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners)
result = target_assigner.assign(anchors_boxlist, groundtruth_boxlist)
(cls_targets, cls_weights, reg_targets, reg_weights, _) = result
return (cls_targets, cls_weights, reg_targets, reg_weights)
anchor_means = np.array([[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 1.0, 0.8],
[0.0, 0.5, .9, 1.0]], dtype=np.float32)
groundtruth_box_corners = np.array([[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.9, 0.9]], dtype=np.float32)
exp_cls_targets = [[1], [1], [0]]
exp_cls_weights = [1, 1, 0]
exp_reg_targets = [[0, 0, 0, 0],
[0, 0, -1, 1],
[0, 0, 0, 0]]
exp_reg_weights = [1, 1, 0]
(cls_targets_out,
cls_weights_out, reg_targets_out, reg_weights_out) = self.execute(
graph_fn, [anchor_means, groundtruth_box_corners])
self.assertAllClose(cls_targets_out, exp_cls_targets)
self.assertAllClose(cls_weights_out, exp_cls_weights)
self.assertAllClose(reg_targets_out, exp_reg_targets)
self.assertAllClose(reg_weights_out, exp_reg_weights)
self.assertEquals(cls_targets_out.dtype, np.float32)
self.assertEquals(cls_weights_out.dtype, np.float32)
self.assertEquals(reg_targets_out.dtype, np.float32)
self.assertEquals(reg_weights_out.dtype, np.float32)
示例13: _get_agnostic_target_assigner
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import IouSimilarity [as 别名]
def _get_agnostic_target_assigner(self):
similarity_calc = region_similarity_calculator.IouSimilarity()
matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
unmatched_threshold=0.5)
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1)
return targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder,
unmatched_cls_target=None)
示例14: _get_multi_class_target_assigner
# 需要导入模块: from object_detection.core import region_similarity_calculator [as 别名]
# 或者: from object_detection.core.region_similarity_calculator import IouSimilarity [as 别名]
def _get_multi_class_target_assigner(self, num_classes):
similarity_calc = region_similarity_calculator.IouSimilarity()
matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
unmatched_threshold=0.5)
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1)
unmatched_cls_target = tf.constant([1] + num_classes * [0], tf.float32)
return targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder,
unmatched_cls_target=unmatched_cls_target)