本文整理汇总了Python中object_detection.core.preprocessor_cache.PreprocessorCache方法的典型用法代码示例。如果您正苦于以下问题:Python preprocessor_cache.PreprocessorCache方法的具体用法?Python preprocessor_cache.PreprocessorCache怎么用?Python preprocessor_cache.PreprocessorCache使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类object_detection.core.preprocessor_cache
的用法示例。
在下文中一共展示了preprocessor_cache.PreprocessorCache方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _apply_with_random_selector
# 需要导入模块: from object_detection.core import preprocessor_cache [as 别名]
# 或者: from object_detection.core.preprocessor_cache import PreprocessorCache [as 别名]
def _apply_with_random_selector(x,
func,
num_cases,
preprocess_vars_cache=None,
key=''):
"""Computes func(x, sel), with sel sampled from [0...num_cases-1].
If both preprocess_vars_cache AND key are the same between two calls, sel will
be the same value in both calls.
Args:
x: input Tensor.
func: Python function to apply.
num_cases: Python int32, number of cases to sample sel from.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
key: variable identifier for preprocess_vars_cache.
Returns:
The result of func(x, sel), where func receives the value of the
selector as a python integer, but sel is sampled dynamically.
"""
generator_func = functools.partial(
tf.random_uniform, [], maxval=num_cases, dtype=tf.int32)
rand_sel = _get_or_create_preprocess_rand_vars(
generator_func, preprocessor_cache.PreprocessorCache.SELECTOR,
preprocess_vars_cache, key)
# Pass the real x only to one of the func calls.
return control_flow_ops.merge([func(
control_flow_ops.switch(x, tf.equal(rand_sel, case))[1], case)
for case in range(num_cases)])[0]
示例2: _get_or_create_preprocess_rand_vars
# 需要导入模块: from object_detection.core import preprocessor_cache [as 别名]
# 或者: from object_detection.core.preprocessor_cache import PreprocessorCache [as 别名]
def _get_or_create_preprocess_rand_vars(generator_func,
function_id,
preprocess_vars_cache,
key=''):
"""Returns a tensor stored in preprocess_vars_cache or using generator_func.
If the tensor was previously generated and appears in the PreprocessorCache,
the previously generated tensor will be returned. Otherwise, a new tensor
is generated using generator_func and stored in the cache.
Args:
generator_func: A 0-argument function that generates a tensor.
function_id: identifier for the preprocessing function used.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
key: identifier for the variable stored.
Returns:
The generated tensor.
"""
if preprocess_vars_cache is not None:
var = preprocess_vars_cache.get(function_id, key)
if var is None:
var = generator_func()
preprocess_vars_cache.update(function_id, key, var)
else:
var = generator_func()
return var
示例3: random_pixel_value_scale
# 需要导入模块: from object_detection.core import preprocessor_cache [as 别名]
# 或者: from object_detection.core.preprocessor_cache import PreprocessorCache [as 别名]
def random_pixel_value_scale(image,
minval=0.9,
maxval=1.1,
seed=None,
preprocess_vars_cache=None):
"""Scales each value in the pixels of the image.
This function scales each pixel independent of the other ones.
For each value in image tensor, draws a random number between
minval and maxval and multiples the values with them.
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
with pixel values varying between [0, 255].
minval: lower ratio of scaling pixel values.
maxval: upper ratio of scaling pixel values.
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same shape as input image.
"""
with tf.name_scope('RandomPixelValueScale', values=[image]):
generator_func = functools.partial(
tf.random_uniform, tf.shape(image),
minval=minval, maxval=maxval,
dtype=tf.float32, seed=seed)
color_coef = _get_or_create_preprocess_rand_vars(
generator_func,
preprocessor_cache.PreprocessorCache.PIXEL_VALUE_SCALE,
preprocess_vars_cache)
image = tf.multiply(image, color_coef)
image = tf.clip_by_value(image, 0.0, 255.0)
return image
示例4: random_adjust_brightness
# 需要导入模块: from object_detection.core import preprocessor_cache [as 别名]
# 或者: from object_detection.core.preprocessor_cache import PreprocessorCache [as 别名]
def random_adjust_brightness(image,
max_delta=0.2,
seed=None,
preprocess_vars_cache=None):
"""Randomly adjusts brightness.
Makes sure the output image is still between 0 and 255.
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
with pixel values varying between [0, 255].
max_delta: how much to change the brightness. A value between [0, 1).
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same shape as input image.
boxes: boxes which is the same shape as input boxes.
"""
with tf.name_scope('RandomAdjustBrightness', values=[image]):
generator_func = functools.partial(tf.random_uniform, [],
-max_delta, max_delta, seed=seed)
delta = _get_or_create_preprocess_rand_vars(
generator_func,
preprocessor_cache.PreprocessorCache.ADJUST_BRIGHTNESS,
preprocess_vars_cache)
image = tf.image.adjust_brightness(image / 255, delta) * 255
image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=255.0)
return image
示例5: random_adjust_contrast
# 需要导入模块: from object_detection.core import preprocessor_cache [as 别名]
# 或者: from object_detection.core.preprocessor_cache import PreprocessorCache [as 别名]
def random_adjust_contrast(image,
min_delta=0.8,
max_delta=1.25,
seed=None,
preprocess_vars_cache=None):
"""Randomly adjusts contrast.
Makes sure the output image is still between 0 and 255.
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
with pixel values varying between [0, 255].
min_delta: see max_delta.
max_delta: how much to change the contrast. Contrast will change with a
value between min_delta and max_delta. This value will be
multiplied to the current contrast of the image.
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same shape as input image.
"""
with tf.name_scope('RandomAdjustContrast', values=[image]):
generator_func = functools.partial(tf.random_uniform, [],
min_delta, max_delta, seed=seed)
contrast_factor = _get_or_create_preprocess_rand_vars(
generator_func,
preprocessor_cache.PreprocessorCache.ADJUST_CONTRAST,
preprocess_vars_cache)
image = tf.image.adjust_contrast(image / 255, contrast_factor) * 255
image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=255.0)
return image
示例6: random_adjust_hue
# 需要导入模块: from object_detection.core import preprocessor_cache [as 别名]
# 或者: from object_detection.core.preprocessor_cache import PreprocessorCache [as 别名]
def random_adjust_hue(image,
max_delta=0.02,
seed=None,
preprocess_vars_cache=None):
"""Randomly adjusts hue.
Makes sure the output image is still between 0 and 255.
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
with pixel values varying between [0, 255].
max_delta: change hue randomly with a value between 0 and max_delta.
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same shape as input image.
"""
with tf.name_scope('RandomAdjustHue', values=[image]):
generator_func = functools.partial(tf.random_uniform, [],
-max_delta, max_delta, seed=seed)
delta = _get_or_create_preprocess_rand_vars(
generator_func, preprocessor_cache.PreprocessorCache.ADJUST_HUE,
preprocess_vars_cache)
image = tf.image.adjust_hue(image / 255, delta) * 255
image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=255.0)
return image
示例7: random_adjust_saturation
# 需要导入模块: from object_detection.core import preprocessor_cache [as 别名]
# 或者: from object_detection.core.preprocessor_cache import PreprocessorCache [as 别名]
def random_adjust_saturation(image,
min_delta=0.8,
max_delta=1.25,
seed=None,
preprocess_vars_cache=None):
"""Randomly adjusts saturation.
Makes sure the output image is still between 0 and 255.
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
with pixel values varying between [0, 255].
min_delta: see max_delta.
max_delta: how much to change the saturation. Saturation will change with a
value between min_delta and max_delta. This value will be
multiplied to the current saturation of the image.
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same shape as input image.
"""
with tf.name_scope('RandomAdjustSaturation', values=[image]):
generator_func = functools.partial(tf.random_uniform, [],
min_delta, max_delta, seed=seed)
saturation_factor = _get_or_create_preprocess_rand_vars(
generator_func,
preprocessor_cache.PreprocessorCache.ADJUST_SATURATION,
preprocess_vars_cache)
image = tf.image.adjust_saturation(image / 255, saturation_factor) * 255
image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=255.0)
return image
示例8: random_pixel_value_scale
# 需要导入模块: from object_detection.core import preprocessor_cache [as 别名]
# 或者: from object_detection.core.preprocessor_cache import PreprocessorCache [as 别名]
def random_pixel_value_scale(image,
minval=0.9,
maxval=1.1,
seed=None,
preprocess_vars_cache=None):
"""Scales each value in the pixels of the image.
This function scales each pixel independent of the other ones.
For each value in image tensor, draws a random number between
minval and maxval and multiples the values with them.
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
with pixel values varying between [0, 1].
minval: lower ratio of scaling pixel values.
maxval: upper ratio of scaling pixel values.
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same shape as input image.
"""
with tf.name_scope('RandomPixelValueScale', values=[image]):
generator_func = functools.partial(
tf.random_uniform, tf.shape(image),
minval=minval, maxval=maxval,
dtype=tf.float32, seed=seed)
color_coef = _get_or_create_preprocess_rand_vars(
generator_func,
preprocessor_cache.PreprocessorCache.PIXEL_VALUE_SCALE,
preprocess_vars_cache)
image = tf.multiply(image, color_coef)
image = tf.clip_by_value(image, 0.0, 1.0)
return image
示例9: random_adjust_brightness
# 需要导入模块: from object_detection.core import preprocessor_cache [as 别名]
# 或者: from object_detection.core.preprocessor_cache import PreprocessorCache [as 别名]
def random_adjust_brightness(image,
max_delta=0.2,
seed=None,
preprocess_vars_cache=None):
"""Randomly adjusts brightness.
Makes sure the output image is still between 0 and 1.
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
with pixel values varying between [0, 1].
max_delta: how much to change the brightness. A value between [0, 1).
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same shape as input image.
boxes: boxes which is the same shape as input boxes.
"""
with tf.name_scope('RandomAdjustBrightness', values=[image]):
generator_func = functools.partial(tf.random_uniform, [],
-max_delta, max_delta, seed=seed)
delta = _get_or_create_preprocess_rand_vars(
generator_func,
preprocessor_cache.PreprocessorCache.ADJUST_BRIGHTNESS,
preprocess_vars_cache)
image = tf.image.adjust_brightness(image, delta)
image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=1.0)
return image
示例10: random_adjust_contrast
# 需要导入模块: from object_detection.core import preprocessor_cache [as 别名]
# 或者: from object_detection.core.preprocessor_cache import PreprocessorCache [as 别名]
def random_adjust_contrast(image,
min_delta=0.8,
max_delta=1.25,
seed=None,
preprocess_vars_cache=None):
"""Randomly adjusts contrast.
Makes sure the output image is still between 0 and 1.
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
with pixel values varying between [0, 1].
min_delta: see max_delta.
max_delta: how much to change the contrast. Contrast will change with a
value between min_delta and max_delta. This value will be
multiplied to the current contrast of the image.
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same shape as input image.
"""
with tf.name_scope('RandomAdjustContrast', values=[image]):
generator_func = functools.partial(tf.random_uniform, [],
min_delta, max_delta, seed=seed)
contrast_factor = _get_or_create_preprocess_rand_vars(
generator_func,
preprocessor_cache.PreprocessorCache.ADJUST_CONTRAST,
preprocess_vars_cache)
image = tf.image.adjust_contrast(image, contrast_factor)
image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=1.0)
return image
示例11: random_adjust_hue
# 需要导入模块: from object_detection.core import preprocessor_cache [as 别名]
# 或者: from object_detection.core.preprocessor_cache import PreprocessorCache [as 别名]
def random_adjust_hue(image,
max_delta=0.02,
seed=None,
preprocess_vars_cache=None):
"""Randomly adjusts hue.
Makes sure the output image is still between 0 and 1.
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
with pixel values varying between [0, 1].
max_delta: change hue randomly with a value between 0 and max_delta.
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same shape as input image.
"""
with tf.name_scope('RandomAdjustHue', values=[image]):
generator_func = functools.partial(tf.random_uniform, [],
-max_delta, max_delta, seed=seed)
delta = _get_or_create_preprocess_rand_vars(
generator_func, preprocessor_cache.PreprocessorCache.ADJUST_HUE,
preprocess_vars_cache)
image = tf.image.adjust_hue(image, delta)
image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=1.0)
return image
示例12: random_adjust_saturation
# 需要导入模块: from object_detection.core import preprocessor_cache [as 别名]
# 或者: from object_detection.core.preprocessor_cache import PreprocessorCache [as 别名]
def random_adjust_saturation(image,
min_delta=0.8,
max_delta=1.25,
seed=None,
preprocess_vars_cache=None):
"""Randomly adjusts saturation.
Makes sure the output image is still between 0 and 1.
Args:
image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
with pixel values varying between [0, 1].
min_delta: see max_delta.
max_delta: how much to change the saturation. Saturation will change with a
value between min_delta and max_delta. This value will be
multiplied to the current saturation of the image.
seed: random seed.
preprocess_vars_cache: PreprocessorCache object that records previously
performed augmentations. Updated in-place. If this
function is called multiple times with the same
non-null cache, it will perform deterministically.
Returns:
image: image which is the same shape as input image.
"""
with tf.name_scope('RandomAdjustSaturation', values=[image]):
generator_func = functools.partial(tf.random_uniform, [],
min_delta, max_delta, seed=seed)
saturation_factor = _get_or_create_preprocess_rand_vars(
generator_func,
preprocessor_cache.PreprocessorCache.ADJUST_SATURATION,
preprocess_vars_cache)
image = tf.image.adjust_saturation(image, saturation_factor)
image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=1.0)
return image