当前位置: 首页>>代码示例>>Python>>正文


Python preprocessor.ssd_random_crop_pad方法代码示例

本文整理汇总了Python中object_detection.core.preprocessor.ssd_random_crop_pad方法的典型用法代码示例。如果您正苦于以下问题:Python preprocessor.ssd_random_crop_pad方法的具体用法?Python preprocessor.ssd_random_crop_pad怎么用?Python preprocessor.ssd_random_crop_pad使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.core.preprocessor的用法示例。


在下文中一共展示了preprocessor.ssd_random_crop_pad方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testSSDRandomCropPad

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import ssd_random_crop_pad [as 别名]
def testSSDRandomCropPad(self):
    images = self.createTestImages()
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()
    preprocessing_options = [
        (preprocessor.normalize_image, {
            'original_minval': 0,
            'original_maxval': 255,
            'target_minval': 0,
            'target_maxval': 1
        }),
        (preprocessor.ssd_random_crop_pad, {})]
    tensor_dict = {fields.InputDataFields.image: images,
                   fields.InputDataFields.groundtruth_boxes: boxes,
                   fields.InputDataFields.groundtruth_classes: labels}
    distorted_tensor_dict = preprocessor.preprocess(tensor_dict,
                                                    preprocessing_options)
    distorted_images = distorted_tensor_dict[fields.InputDataFields.image]
    distorted_boxes = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_boxes]

    images_rank = tf.rank(images)
    distorted_images_rank = tf.rank(distorted_images)
    boxes_rank = tf.rank(boxes)
    distorted_boxes_rank = tf.rank(distorted_boxes)

    with self.test_session() as sess:
      (boxes_rank_, distorted_boxes_rank_, images_rank_,
       distorted_images_rank_) = sess.run([
           boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank
       ])
      self.assertAllEqual(boxes_rank_, distorted_boxes_rank_)
      self.assertAllEqual(images_rank_, distorted_images_rank_) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:35,代码来源:preprocessor_test.py

示例2: testSSDRandomCropPad

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import ssd_random_crop_pad [as 别名]
def testSSDRandomCropPad(self):
    images = self.createTestImages()
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()
    weights = self.createTestGroundtruthWeights()
    preprocessing_options = [
        (preprocessor.normalize_image, {
            'original_minval': 0,
            'original_maxval': 255,
            'target_minval': 0,
            'target_maxval': 1
        }),
        (preprocessor.ssd_random_crop_pad, {})]
    tensor_dict = {
        fields.InputDataFields.image: images,
        fields.InputDataFields.groundtruth_boxes: boxes,
        fields.InputDataFields.groundtruth_classes: labels,
        fields.InputDataFields.groundtruth_weights: weights,
    }
    distorted_tensor_dict = preprocessor.preprocess(tensor_dict,
                                                    preprocessing_options)
    distorted_images = distorted_tensor_dict[fields.InputDataFields.image]
    distorted_boxes = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_boxes]

    images_rank = tf.rank(images)
    distorted_images_rank = tf.rank(distorted_images)
    boxes_rank = tf.rank(boxes)
    distorted_boxes_rank = tf.rank(distorted_boxes)

    with self.test_session() as sess:
      (boxes_rank_, distorted_boxes_rank_, images_rank_,
       distorted_images_rank_) = sess.run([
           boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank
       ])
      self.assertAllEqual(boxes_rank_, distorted_boxes_rank_)
      self.assertAllEqual(images_rank_, distorted_images_rank_) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:39,代码来源:preprocessor_test.py

示例3: testSSDRandomCropPad

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import ssd_random_crop_pad [as 别名]
def testSSDRandomCropPad(self):
    images = self.createTestImages()
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()
    preprocessing_options = [
        (preprocessor.normalize_image, {
            'original_minval': 0,
            'original_maxval': 255,
            'target_minval': 0,
            'target_maxval': 1
        }),
        (preprocessor.ssd_random_crop_pad, {})]
    tensor_dict = {
        fields.InputDataFields.image: images,
        fields.InputDataFields.groundtruth_boxes: boxes,
        fields.InputDataFields.groundtruth_classes: labels,
    }
    distorted_tensor_dict = preprocessor.preprocess(tensor_dict,
                                                    preprocessing_options)
    distorted_images = distorted_tensor_dict[fields.InputDataFields.image]
    distorted_boxes = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_boxes]

    images_rank = tf.rank(images)
    distorted_images_rank = tf.rank(distorted_images)
    boxes_rank = tf.rank(boxes)
    distorted_boxes_rank = tf.rank(distorted_boxes)

    with self.test_session() as sess:
      (boxes_rank_, distorted_boxes_rank_, images_rank_,
       distorted_images_rank_) = sess.run([
           boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank
       ])
      self.assertAllEqual(boxes_rank_, distorted_boxes_rank_)
      self.assertAllEqual(images_rank_, distorted_images_rank_) 
开发者ID:cagbal,项目名称:ros_people_object_detection_tensorflow,代码行数:37,代码来源:preprocessor_test.py

示例4: testSSDRandomCropPad

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import ssd_random_crop_pad [as 别名]
def testSSDRandomCropPad(self):
    def graph_fn():
      images = self.createTestImages()
      boxes = self.createTestBoxes()
      labels = self.createTestLabels()
      weights = self.createTestGroundtruthWeights()
      preprocessing_options = [
          (preprocessor.normalize_image, {
              'original_minval': 0,
              'original_maxval': 255,
              'target_minval': 0,
              'target_maxval': 1
          }),
          (preprocessor.ssd_random_crop_pad, {})]
      tensor_dict = {
          fields.InputDataFields.image: images,
          fields.InputDataFields.groundtruth_boxes: boxes,
          fields.InputDataFields.groundtruth_classes: labels,
          fields.InputDataFields.groundtruth_weights: weights,
      }
      distorted_tensor_dict = preprocessor.preprocess(tensor_dict,
                                                      preprocessing_options)
      distorted_images = distorted_tensor_dict[fields.InputDataFields.image]
      distorted_boxes = distorted_tensor_dict[
          fields.InputDataFields.groundtruth_boxes]

      images_rank = tf.rank(images)
      distorted_images_rank = tf.rank(distorted_images)
      boxes_rank = tf.rank(boxes)
      distorted_boxes_rank = tf.rank(distorted_boxes)
      return [
          boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank
      ]
    (boxes_rank_, distorted_boxes_rank_, images_rank_,
     distorted_images_rank_) = self.execute_cpu(graph_fn, [])
    self.assertAllEqual(boxes_rank_, distorted_boxes_rank_)
    self.assertAllEqual(images_rank_, distorted_images_rank_) 
开发者ID:tensorflow,项目名称:models,代码行数:39,代码来源:preprocessor_test.py

示例5: test_build_ssd_random_crop_pad

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import ssd_random_crop_pad [as 别名]
def test_build_ssd_random_crop_pad(self):
    preprocessor_text_proto = """
    ssd_random_crop_pad {
      operations {
        min_object_covered: 0.0
        min_aspect_ratio: 0.875
        max_aspect_ratio: 1.125
        min_area: 0.5
        max_area: 1.0
        overlap_thresh: 0.0
        random_coef: 0.375
        min_padded_size_ratio: [0.0, 0.0]
        max_padded_size_ratio: [2.0, 2.0]
        pad_color_r: 0.5
        pad_color_g: 0.5
        pad_color_b: 0.5
      }
      operations {
        min_object_covered: 0.25
        min_aspect_ratio: 0.75
        max_aspect_ratio: 1.5
        min_area: 0.5
        max_area: 1.0
        overlap_thresh: 0.25
        random_coef: 0.375
        min_padded_size_ratio: [0.0, 0.0]
        max_padded_size_ratio: [2.0, 2.0]
        pad_color_r: 0.5
        pad_color_g: 0.5
        pad_color_b: 0.5
      }
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.ssd_random_crop_pad)
    self.assertEqual(args, {'min_object_covered': [0.0, 0.25],
                            'aspect_ratio_range': [(0.875, 1.125), (0.75, 1.5)],
                            'area_range': [(0.5, 1.0), (0.5, 1.0)],
                            'overlap_thresh': [0.0, 0.25],
                            'random_coef': [0.375, 0.375],
                            'min_padded_size_ratio': [(0.0, 0.0), (0.0, 0.0)],
                            'max_padded_size_ratio': [(2.0, 2.0), (2.0, 2.0)],
                            'pad_color': [(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)]}) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:47,代码来源:preprocessor_builder_test.py


注:本文中的object_detection.core.preprocessor.ssd_random_crop_pad方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。