当前位置: 首页>>代码示例>>Python>>正文


Python preprocessor.ssd_random_crop方法代码示例

本文整理汇总了Python中object_detection.core.preprocessor.ssd_random_crop方法的典型用法代码示例。如果您正苦于以下问题:Python preprocessor.ssd_random_crop方法的具体用法?Python preprocessor.ssd_random_crop怎么用?Python preprocessor.ssd_random_crop使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.core.preprocessor的用法示例。


在下文中一共展示了preprocessor.ssd_random_crop方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testSSDRandomCrop

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import ssd_random_crop [as 别名]
def testSSDRandomCrop(self):
    preprocessing_options = [
        (preprocessor.normalize_image, {
            'original_minval': 0,
            'original_maxval': 255,
            'target_minval': 0,
            'target_maxval': 1
        }),
        (preprocessor.ssd_random_crop, {})]
    images = self.createTestImages()
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()
    tensor_dict = {fields.InputDataFields.image: images,
                   fields.InputDataFields.groundtruth_boxes: boxes,
                   fields.InputDataFields.groundtruth_classes: labels}
    distorted_tensor_dict = preprocessor.preprocess(tensor_dict,
                                                    preprocessing_options)
    distorted_images = distorted_tensor_dict[fields.InputDataFields.image]
    distorted_boxes = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_boxes]

    images_rank = tf.rank(images)
    distorted_images_rank = tf.rank(distorted_images)
    boxes_rank = tf.rank(boxes)
    distorted_boxes_rank = tf.rank(distorted_boxes)

    with self.test_session() as sess:
      (boxes_rank_, distorted_boxes_rank_, images_rank_,
       distorted_images_rank_) = sess.run(
           [boxes_rank, distorted_boxes_rank, images_rank,
            distorted_images_rank])
      self.assertAllEqual(boxes_rank_, distorted_boxes_rank_)
      self.assertAllEqual(images_rank_, distorted_images_rank_) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:35,代码来源:preprocessor_test.py

示例2: test_build_ssd_random_crop

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import ssd_random_crop [as 别名]
def test_build_ssd_random_crop(self):
    preprocessor_text_proto = """
    ssd_random_crop {
      operations {
        min_object_covered: 0.0
        min_aspect_ratio: 0.875
        max_aspect_ratio: 1.125
        min_area: 0.5
        max_area: 1.0
        overlap_thresh: 0.0
        random_coef: 0.375
      }
      operations {
        min_object_covered: 0.25
        min_aspect_ratio: 0.75
        max_aspect_ratio: 1.5
        min_area: 0.5
        max_area: 1.0
        overlap_thresh: 0.25
        random_coef: 0.375
      }
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.ssd_random_crop)
    self.assertEqual(args, {'min_object_covered': [0.0, 0.25],
                            'aspect_ratio_range': [(0.875, 1.125), (0.75, 1.5)],
                            'area_range': [(0.5, 1.0), (0.5, 1.0)],
                            'overlap_thresh': [0.0, 0.25],
                            'random_coef': [0.375, 0.375]}) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:34,代码来源:preprocessor_builder_test.py

示例3: test_build_ssd_random_crop_empty_operations

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import ssd_random_crop [as 别名]
def test_build_ssd_random_crop_empty_operations(self):
    preprocessor_text_proto = """
    ssd_random_crop {
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.ssd_random_crop)
    self.assertEqual(args, {}) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:12,代码来源:preprocessor_builder_test.py

示例4: testSSDRandomCropWithCache

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import ssd_random_crop [as 别名]
def testSSDRandomCropWithCache(self):
    preprocess_options = [
        (preprocessor.normalize_image, {
            'original_minval': 0,
            'original_maxval': 255,
            'target_minval': 0,
            'target_maxval': 1
        }),
        (preprocessor.ssd_random_crop, {})]
    self._testPreprocessorCache(preprocess_options,
                                test_boxes=True,
                                test_masks=False,
                                test_keypoints=False) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:15,代码来源:preprocessor_test.py

示例5: testSSDRandomCrop

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import ssd_random_crop [as 别名]
def testSSDRandomCrop(self):
    preprocessing_options = [
        (preprocessor.normalize_image, {
            'original_minval': 0,
            'original_maxval': 255,
            'target_minval': 0,
            'target_maxval': 1
        }),
        (preprocessor.ssd_random_crop, {})]
    images = self.createTestImages()
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()
    weights = self.createTestGroundtruthWeights()
    tensor_dict = {
        fields.InputDataFields.image: images,
        fields.InputDataFields.groundtruth_boxes: boxes,
        fields.InputDataFields.groundtruth_classes: labels,
        fields.InputDataFields.groundtruth_weights: weights,
    }
    distorted_tensor_dict = preprocessor.preprocess(tensor_dict,
                                                    preprocessing_options)
    distorted_images = distorted_tensor_dict[fields.InputDataFields.image]
    distorted_boxes = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_boxes]

    images_rank = tf.rank(images)
    distorted_images_rank = tf.rank(distorted_images)
    boxes_rank = tf.rank(boxes)
    distorted_boxes_rank = tf.rank(distorted_boxes)

    with self.test_session() as sess:
      (boxes_rank_, distorted_boxes_rank_, images_rank_,
       distorted_images_rank_) = sess.run(
           [boxes_rank, distorted_boxes_rank, images_rank,
            distorted_images_rank])
      self.assertAllEqual(boxes_rank_, distorted_boxes_rank_)
      self.assertAllEqual(images_rank_, distorted_images_rank_) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:39,代码来源:preprocessor_test.py

示例6: test_build_ssd_random_crop

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import ssd_random_crop [as 别名]
def test_build_ssd_random_crop(self):
    preprocessor_text_proto = """
    ssd_random_crop {
      operations {
        min_object_covered: 0.0
        min_aspect_ratio: 0.875
        max_aspect_ratio: 1.125
        min_area: 0.5
        max_area: 1.0
        overlap_thresh: 0.0
        clip_boxes: False
        random_coef: 0.375
      }
      operations {
        min_object_covered: 0.25
        min_aspect_ratio: 0.75
        max_aspect_ratio: 1.5
        min_area: 0.5
        max_area: 1.0
        overlap_thresh: 0.25
        clip_boxes: True
        random_coef: 0.375
      }
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.ssd_random_crop)
    self.assertEqual(args, {'min_object_covered': [0.0, 0.25],
                            'aspect_ratio_range': [(0.875, 1.125), (0.75, 1.5)],
                            'area_range': [(0.5, 1.0), (0.5, 1.0)],
                            'overlap_thresh': [0.0, 0.25],
                            'clip_boxes': [False, True],
                            'random_coef': [0.375, 0.375]}) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:37,代码来源:preprocessor_builder_test.py

示例7: testSSDRandomCrop

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import ssd_random_crop [as 别名]
def testSSDRandomCrop(self):
    preprocessing_options = [
        (preprocessor.normalize_image, {
            'original_minval': 0,
            'original_maxval': 255,
            'target_minval': 0,
            'target_maxval': 1
        }),
        (preprocessor.ssd_random_crop, {})]
    images = self.createTestImages()
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()
    tensor_dict = {
        fields.InputDataFields.image: images,
        fields.InputDataFields.groundtruth_boxes: boxes,
        fields.InputDataFields.groundtruth_classes: labels,
    }
    distorted_tensor_dict = preprocessor.preprocess(tensor_dict,
                                                    preprocessing_options)
    distorted_images = distorted_tensor_dict[fields.InputDataFields.image]
    distorted_boxes = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_boxes]

    images_rank = tf.rank(images)
    distorted_images_rank = tf.rank(distorted_images)
    boxes_rank = tf.rank(boxes)
    distorted_boxes_rank = tf.rank(distorted_boxes)

    with self.test_session() as sess:
      (boxes_rank_, distorted_boxes_rank_, images_rank_,
       distorted_images_rank_) = sess.run(
           [boxes_rank, distorted_boxes_rank, images_rank,
            distorted_images_rank])
      self.assertAllEqual(boxes_rank_, distorted_boxes_rank_)
      self.assertAllEqual(images_rank_, distorted_images_rank_) 
开发者ID:cagbal,项目名称:ros_people_object_detection_tensorflow,代码行数:37,代码来源:preprocessor_test.py


注:本文中的object_detection.core.preprocessor.ssd_random_crop方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。