当前位置: 首页>>代码示例>>Python>>正文


Python preprocessor.resize_to_min_dimension方法代码示例

本文整理汇总了Python中object_detection.core.preprocessor.resize_to_min_dimension方法的典型用法代码示例。如果您正苦于以下问题:Python preprocessor.resize_to_min_dimension方法的具体用法?Python preprocessor.resize_to_min_dimension怎么用?Python preprocessor.resize_to_min_dimension使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.core.preprocessor的用法示例。


在下文中一共展示了preprocessor.resize_to_min_dimension方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testResizeToMinDimensionWithInstanceMasksTensorOfSizeZero

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import resize_to_min_dimension [as 别名]
def testResizeToMinDimensionWithInstanceMasksTensorOfSizeZero(self):
    """Tests image resizing, checking output sizes."""
    in_image_shape_list = [[60, 40, 3], [15, 30, 3]]
    in_masks_shape_list = [[0, 60, 40], [0, 15, 30]]
    min_dim = 50
    expected_image_shape_list = [[75, 50, 3], [50, 100, 3]]
    expected_masks_shape_list = [[0, 75, 50], [0, 50, 100]]

    for (in_image_shape, expected_image_shape, in_masks_shape,
         expected_mask_shape) in zip(in_image_shape_list,
                                     expected_image_shape_list,
                                     in_masks_shape_list,
                                     expected_masks_shape_list):
      in_image = tf.random_uniform(in_image_shape)
      in_masks = tf.random_uniform(in_masks_shape)
      out_image, out_masks, _ = preprocessor.resize_to_min_dimension(
          in_image, in_masks, min_dimension=min_dim)
      out_image_shape = tf.shape(out_image)
      out_masks_shape = tf.shape(out_masks)

      with self.test_session() as sess:
        out_image_shape, out_masks_shape = sess.run(
            [out_image_shape, out_masks_shape])
        self.assertAllEqual(out_image_shape, expected_image_shape)
        self.assertAllEqual(out_masks_shape, expected_mask_shape) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:27,代码来源:preprocessor_test.py

示例2: testResizeToMinDimensionWithInstanceMasksTensorOfSizeZero

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import resize_to_min_dimension [as 别名]
def testResizeToMinDimensionWithInstanceMasksTensorOfSizeZero(self):
    """Tests image resizing, checking output sizes."""
    in_image_shape_list = [[60, 40, 3], [15, 30, 3]]
    in_masks_shape_list = [[0, 60, 40], [0, 15, 30]]
    min_dim = 50
    expected_image_shape_list = [[75, 50, 3], [50, 100, 3]]
    expected_masks_shape_list = [[0, 75, 50], [0, 50, 100]]

    for (in_image_shape, expected_image_shape, in_masks_shape,
         expected_mask_shape) in zip(in_image_shape_list,
                                     expected_image_shape_list,
                                     in_masks_shape_list,
                                     expected_masks_shape_list):
      in_image = tf.random_uniform(in_image_shape)
      in_masks = tf.random_uniform(in_masks_shape)
      out_image, out_masks = preprocessor.resize_to_min_dimension(
          in_image, in_masks, min_dimension=min_dim)
      out_image_shape = tf.shape(out_image)
      out_masks_shape = tf.shape(out_masks)

      with self.test_session() as sess:
        out_image_shape, out_masks_shape = sess.run(
            [out_image_shape, out_masks_shape])
        self.assertAllEqual(out_image_shape, expected_image_shape)
        self.assertAllEqual(out_masks_shape, expected_mask_shape) 
开发者ID:rky0930,项目名称:yolo_v2,代码行数:27,代码来源:preprocessor_test.py

示例3: testResizeToMinDimensionTensorShapes

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import resize_to_min_dimension [as 别名]
def testResizeToMinDimensionTensorShapes(self):
    in_image_shape_list = [[60, 55, 3], [15, 30, 3]]
    in_masks_shape_list = [[15, 60, 55], [10, 15, 30]]
    min_dim = 50
    expected_image_shape_list = [[60, 55, 3], [50, 100, 3]]
    expected_masks_shape_list = [[15, 60, 55], [10, 50, 100]]

    for (in_image_shape, expected_image_shape, in_masks_shape,
         expected_mask_shape) in zip(in_image_shape_list,
                                     expected_image_shape_list,
                                     in_masks_shape_list,
                                     expected_masks_shape_list):
      in_image = tf.placeholder(tf.float32, shape=(None, None, 3))
      in_masks = tf.placeholder(tf.float32, shape=(None, None, None))
      in_masks = tf.random_uniform(in_masks_shape)
      out_image, out_masks, _ = preprocessor.resize_to_min_dimension(
          in_image, in_masks, min_dimension=min_dim)
      out_image_shape = tf.shape(out_image)
      out_masks_shape = tf.shape(out_masks)

      with self.test_session() as sess:
        out_image_shape, out_masks_shape = sess.run(
            [out_image_shape, out_masks_shape],
            feed_dict={
                in_image: np.random.randn(*in_image_shape),
                in_masks: np.random.randn(*in_masks_shape)
            })
        self.assertAllEqual(out_image_shape, expected_image_shape)
        self.assertAllEqual(out_masks_shape, expected_mask_shape) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:31,代码来源:preprocessor_test.py

示例4: testResizeToMinDimensionRaisesErrorOn4DImage

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import resize_to_min_dimension [as 别名]
def testResizeToMinDimensionRaisesErrorOn4DImage(self):
    image = tf.random_uniform([1, 200, 300, 3])
    with self.assertRaises(ValueError):
      preprocessor.resize_to_min_dimension(image, 500) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:6,代码来源:preprocessor_test.py

示例5: testResizeToMinDimensionTensorShapes

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import resize_to_min_dimension [as 别名]
def testResizeToMinDimensionTensorShapes(self):
    in_image_shape_list = [[60, 55, 3], [15, 30, 3]]
    in_masks_shape_list = [[15, 60, 55], [10, 15, 30]]
    min_dim = 50
    expected_image_shape_list = [[60, 55, 3], [50, 100, 3]]
    expected_masks_shape_list = [[15, 60, 55], [10, 50, 100]]

    for (in_image_shape, expected_image_shape, in_masks_shape,
         expected_mask_shape) in zip(in_image_shape_list,
                                     expected_image_shape_list,
                                     in_masks_shape_list,
                                     expected_masks_shape_list):
      in_image = tf.placeholder(tf.float32, shape=(None, None, 3))
      in_masks = tf.placeholder(tf.float32, shape=(None, None, None))
      in_masks = tf.random_uniform(in_masks_shape)
      out_image, out_masks = preprocessor.resize_to_min_dimension(
          in_image, in_masks, min_dimension=min_dim)
      out_image_shape = tf.shape(out_image)
      out_masks_shape = tf.shape(out_masks)

      with self.test_session() as sess:
        out_image_shape, out_masks_shape = sess.run(
            [out_image_shape, out_masks_shape],
            feed_dict={
                in_image: np.random.randn(*in_image_shape),
                in_masks: np.random.randn(*in_masks_shape)
            })
        self.assertAllEqual(out_image_shape, expected_image_shape)
        self.assertAllEqual(out_masks_shape, expected_mask_shape) 
开发者ID:rky0930,项目名称:yolo_v2,代码行数:31,代码来源:preprocessor_test.py


注:本文中的object_detection.core.preprocessor.resize_to_min_dimension方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。