当前位置: 首页>>代码示例>>Python>>正文


Python preprocessor.random_pad_to_aspect_ratio方法代码示例

本文整理汇总了Python中object_detection.core.preprocessor.random_pad_to_aspect_ratio方法的典型用法代码示例。如果您正苦于以下问题:Python preprocessor.random_pad_to_aspect_ratio方法的具体用法?Python preprocessor.random_pad_to_aspect_ratio怎么用?Python preprocessor.random_pad_to_aspect_ratio使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.core.preprocessor的用法示例。


在下文中一共展示了preprocessor.random_pad_to_aspect_ratio方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testRandomPadToAspectRatioWithCache

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import random_pad_to_aspect_ratio [as 别名]
def testRandomPadToAspectRatioWithCache(self):
    preprocess_options = [(preprocessor.random_pad_to_aspect_ratio, {})]
    self._testPreprocessorCache(preprocess_options,
                                test_boxes=True,
                                test_masks=True,
                                test_keypoints=True) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:8,代码来源:preprocessor_test.py

示例2: testRunRandomPadToAspectRatioWithMinMaxPaddedSizeRatios

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import random_pad_to_aspect_ratio [as 别名]
def testRunRandomPadToAspectRatioWithMinMaxPaddedSizeRatios(self):
    image = self.createColorfulTestImage()
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()

    tensor_dict = {
        fields.InputDataFields.image: image,
        fields.InputDataFields.groundtruth_boxes: boxes,
        fields.InputDataFields.groundtruth_classes: labels
    }

    preprocessor_arg_map = preprocessor.get_default_func_arg_map()
    preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio,
                              {'min_padded_size_ratio': (4.0, 4.0),
                               'max_padded_size_ratio': (4.0, 4.0)})]

    distorted_tensor_dict = preprocessor.preprocess(
        tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map)
    distorted_image = distorted_tensor_dict[fields.InputDataFields.image]
    distorted_boxes = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_boxes]
    distorted_labels = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_classes]
    with self.test_session() as sess:
      distorted_image_, distorted_boxes_, distorted_labels_ = sess.run([
          distorted_image, distorted_boxes, distorted_labels])

      expected_boxes = np.array(
          [[0.0, 0.125, 0.1875, 0.5], [0.0625, 0.25, 0.1875, 0.5]],
          dtype=np.float32)
      self.assertAllEqual(distorted_image_.shape, [1, 800, 800, 3])
      self.assertAllEqual(distorted_labels_, [1, 2])
      self.assertAllClose(distorted_boxes_.flatten(),
                          expected_boxes.flatten()) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:36,代码来源:preprocessor_test.py

示例3: testRunRandomPadToAspectRatioWithMasks

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import random_pad_to_aspect_ratio [as 别名]
def testRunRandomPadToAspectRatioWithMasks(self):
    image = self.createColorfulTestImage()
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()
    masks = tf.random_uniform([2, 200, 400], dtype=tf.float32)

    tensor_dict = {
        fields.InputDataFields.image: image,
        fields.InputDataFields.groundtruth_boxes: boxes,
        fields.InputDataFields.groundtruth_classes: labels,
        fields.InputDataFields.groundtruth_instance_masks: masks
    }

    preprocessor_arg_map = preprocessor.get_default_func_arg_map(
        include_instance_masks=True)

    preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, {})]

    distorted_tensor_dict = preprocessor.preprocess(
        tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map)
    distorted_image = distorted_tensor_dict[fields.InputDataFields.image]
    distorted_boxes = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_boxes]
    distorted_labels = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_classes]
    distorted_masks = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_instance_masks]
    with self.test_session() as sess:
      (distorted_image_, distorted_boxes_, distorted_labels_,
       distorted_masks_) = sess.run([
           distorted_image, distorted_boxes, distorted_labels, distorted_masks
       ])

      expected_boxes = np.array(
          [[0.0, 0.25, 0.375, 1.0], [0.125, 0.5, 0.375, 1.0]], dtype=np.float32)
      self.assertAllEqual(distorted_image_.shape, [1, 400, 400, 3])
      self.assertAllEqual(distorted_labels_, [1, 2])
      self.assertAllClose(distorted_boxes_.flatten(),
                          expected_boxes.flatten())
      self.assertAllEqual(distorted_masks_.shape, [2, 400, 400]) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:42,代码来源:preprocessor_test.py

示例4: testRandomPadToAspectRatio

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import random_pad_to_aspect_ratio [as 别名]
def testRandomPadToAspectRatio(self):
    images = self.createTestImages()
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()
    tensor_dict = {
        fields.InputDataFields.image: images,
        fields.InputDataFields.groundtruth_boxes: boxes,
        fields.InputDataFields.groundtruth_classes: labels,
    }
    tensor_dict = preprocessor.preprocess(tensor_dict, [])
    images = tensor_dict[fields.InputDataFields.image]

    preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, {
        'aspect_ratio': 2.0
    })]
    padded_tensor_dict = preprocessor.preprocess(tensor_dict,
                                                 preprocessing_options)

    padded_images = padded_tensor_dict[fields.InputDataFields.image]
    padded_boxes = padded_tensor_dict[
        fields.InputDataFields.groundtruth_boxes]
    boxes_shape = tf.shape(boxes)
    padded_boxes_shape = tf.shape(padded_boxes)
    images_shape = tf.shape(images)
    padded_images_shape = tf.shape(padded_images)

    with self.test_session() as sess:
      (boxes_shape_, padded_boxes_shape_, images_shape_,
       padded_images_shape_) = sess.run([
           boxes_shape, padded_boxes_shape, images_shape, padded_images_shape
       ])
      self.assertAllEqual(boxes_shape_, padded_boxes_shape_)
      self.assertEqual(images_shape_[1], padded_images_shape_[1])
      self.assertEqual(2 * images_shape_[2], padded_images_shape_[2]) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:36,代码来源:preprocessor_test.py


注:本文中的object_detection.core.preprocessor.random_pad_to_aspect_ratio方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。