当前位置: 首页>>代码示例>>Python>>正文


Python preprocessor.random_horizontal_flip方法代码示例

本文整理汇总了Python中object_detection.core.preprocessor.random_horizontal_flip方法的典型用法代码示例。如果您正苦于以下问题:Python preprocessor.random_horizontal_flip方法的具体用法?Python preprocessor.random_horizontal_flip怎么用?Python preprocessor.random_horizontal_flip使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.core.preprocessor的用法示例。


在下文中一共展示了preprocessor.random_horizontal_flip方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testRandomHorizontalFlipWithEmptyBoxes

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import random_horizontal_flip [as 别名]
def testRandomHorizontalFlipWithEmptyBoxes(self):
    preprocess_options = [(preprocessor.random_horizontal_flip, {})]
    images = self.expectedImagesAfterNormalization()
    boxes = self.createEmptyTestBoxes()
    tensor_dict = {fields.InputDataFields.image: images,
                   fields.InputDataFields.groundtruth_boxes: boxes}
    images_expected1 = self.expectedImagesAfterLeftRightFlip()
    boxes_expected = self.createEmptyTestBoxes()
    images_expected2 = images
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options)
    images = tensor_dict[fields.InputDataFields.image]
    boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]

    images_diff1 = tf.squared_difference(images, images_expected1)
    images_diff2 = tf.squared_difference(images, images_expected2)
    images_diff = tf.multiply(images_diff1, images_diff2)
    images_diff_expected = tf.zeros_like(images_diff)

    with self.test_session() as sess:
      (images_diff_, images_diff_expected_, boxes_,
       boxes_expected_) = sess.run([images_diff, images_diff_expected, boxes,
                                    boxes_expected])
      self.assertAllClose(boxes_, boxes_expected_)
      self.assertAllClose(images_diff_, images_diff_expected_) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:26,代码来源:preprocessor_test.py

示例2: test_build_random_horizontal_flip

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import random_horizontal_flip [as 别名]
def test_build_random_horizontal_flip(self):
    preprocessor_text_proto = """
    random_horizontal_flip {
      keypoint_flip_permutation: 1
      keypoint_flip_permutation: 0
      keypoint_flip_permutation: 2
      keypoint_flip_permutation: 3
      keypoint_flip_permutation: 5
      keypoint_flip_permutation: 4
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.random_horizontal_flip)
    self.assertEqual(args, {'keypoint_flip_permutation': (1, 0, 2, 3, 5, 4)}) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:18,代码来源:preprocessor_builder_test.py

示例3: preprocess

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import random_horizontal_flip [as 别名]
def preprocess(tensor_dict):


    images = tensor_dict[fields.InputDataFields.image]
    if len(images.get_shape()) != 4:
        raise ValueError('images in tensor_dict should be rank 4')
    images = tf.squeeze(images, squeeze_dims=[0])
    boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
    class_label = tensor_dict[fields.InputDataFields.groundtruth_classes]

    flipped_image, flipped_box = random_horizontal_flip(images, boxes)
    cropped_image, cropped_box, cropped_label = random_crop_image(flipped_image,
                                                                  flipped_box, class_label,
                                                                  aspect_ratio_range=(0.5, 2),
                                                                  area_range=(0.1, 1.0),
                                                                  overlap_thresh=0.3,
                                                                  random_coef=0.15)
    res_tensor_dict = tensor_dict.copy()
    res_tensor_dict[fields.InputDataFields.image] = tf.expand_dims(cropped_image, 0)
    res_tensor_dict[fields.InputDataFields.groundtruth_boxes] = cropped_box
    res_tensor_dict[fields.InputDataFields.groundtruth_classes] = cropped_label

    return res_tensor_dict 
开发者ID:xiaobai1217,项目名称:MBMD,代码行数:25,代码来源:preprocessor.py

示例4: testRandomHorizontalFlip

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import random_horizontal_flip [as 别名]
def testRandomHorizontalFlip(self):
    preprocess_options = [(preprocessor.random_horizontal_flip, {})]
    images = self.expectedImagesAfterNormalization()
    boxes = self.createTestBoxes()
    tensor_dict = {fields.InputDataFields.image: images,
                   fields.InputDataFields.groundtruth_boxes: boxes}
    images_expected1 = self.expectedImagesAfterMirroring()
    boxes_expected1 = self.expectedBoxesAfterMirroring()
    images_expected2 = images
    boxes_expected2 = boxes
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options)
    images = tensor_dict[fields.InputDataFields.image]
    boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]

    boxes_diff1 = tf.squared_difference(boxes, boxes_expected1)
    boxes_diff2 = tf.squared_difference(boxes, boxes_expected2)
    boxes_diff = tf.multiply(boxes_diff1, boxes_diff2)
    boxes_diff_expected = tf.zeros_like(boxes_diff)

    images_diff1 = tf.squared_difference(images, images_expected1)
    images_diff2 = tf.squared_difference(images, images_expected2)
    images_diff = tf.multiply(images_diff1, images_diff2)
    images_diff_expected = tf.zeros_like(images_diff)

    with self.test_session() as sess:
      (images_diff_, images_diff_expected_, boxes_diff_,
       boxes_diff_expected_) = sess.run([images_diff, images_diff_expected,
                                         boxes_diff, boxes_diff_expected])
      self.assertAllClose(boxes_diff_, boxes_diff_expected_)
      self.assertAllClose(images_diff_, images_diff_expected_) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:32,代码来源:preprocessor_test.py

示例5: testRunRandomHorizontalFlipWithMaskAndKeypoints

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import random_horizontal_flip [as 别名]
def testRunRandomHorizontalFlipWithMaskAndKeypoints(self):
    preprocess_options = [(preprocessor.random_horizontal_flip, {})]
    image_height = 3
    image_width = 3
    images = tf.random_uniform([1, image_height, image_width, 3])
    boxes = self.createTestBoxes()
    masks = self.createTestMasks()
    keypoints = self.createTestKeypoints()
    keypoint_flip_permutation = self.createKeypointFlipPermutation()
    tensor_dict = {
        fields.InputDataFields.image: images,
        fields.InputDataFields.groundtruth_boxes: boxes,
        fields.InputDataFields.groundtruth_instance_masks: masks,
        fields.InputDataFields.groundtruth_keypoints: keypoints
    }
    preprocess_options = [
        (preprocessor.random_horizontal_flip,
         {'keypoint_flip_permutation': keypoint_flip_permutation})]
    preprocessor_arg_map = preprocessor.get_default_func_arg_map(
        include_instance_masks=True, include_keypoints=True)
    tensor_dict = preprocessor.preprocess(
        tensor_dict, preprocess_options, func_arg_map=preprocessor_arg_map)
    boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
    masks = tensor_dict[fields.InputDataFields.groundtruth_instance_masks]
    keypoints = tensor_dict[fields.InputDataFields.groundtruth_keypoints]
    with self.test_session() as sess:
      boxes, masks, keypoints = sess.run([boxes, masks, keypoints])
      self.assertTrue(boxes is not None)
      self.assertTrue(masks is not None)
      self.assertTrue(keypoints is not None) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:32,代码来源:preprocessor_test.py

示例6: test_build_random_horizontal_flip

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import random_horizontal_flip [as 别名]
def test_build_random_horizontal_flip(self):
    preprocessor_text_proto = """
    random_horizontal_flip {
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.random_horizontal_flip)
    self.assertEqual(args, {}) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:12,代码来源:preprocessor_builder_test.py

示例7: testRandomHorizontalFlip

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import random_horizontal_flip [as 别名]
def testRandomHorizontalFlip(self):
    preprocess_options = [(preprocessor.random_horizontal_flip, {})]
    images = self.expectedImagesAfterNormalization()
    boxes = self.createTestBoxes()
    tensor_dict = {fields.InputDataFields.image: images,
                   fields.InputDataFields.groundtruth_boxes: boxes}
    images_expected1 = self.expectedImagesAfterLeftRightFlip()
    boxes_expected1 = self.expectedBoxesAfterLeftRightFlip()
    images_expected2 = images
    boxes_expected2 = boxes
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options)
    images = tensor_dict[fields.InputDataFields.image]
    boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]

    boxes_diff1 = tf.squared_difference(boxes, boxes_expected1)
    boxes_diff2 = tf.squared_difference(boxes, boxes_expected2)
    boxes_diff = tf.multiply(boxes_diff1, boxes_diff2)
    boxes_diff_expected = tf.zeros_like(boxes_diff)

    images_diff1 = tf.squared_difference(images, images_expected1)
    images_diff2 = tf.squared_difference(images, images_expected2)
    images_diff = tf.multiply(images_diff1, images_diff2)
    images_diff_expected = tf.zeros_like(images_diff)

    with self.test_session() as sess:
      (images_diff_, images_diff_expected_, boxes_diff_,
       boxes_diff_expected_) = sess.run([images_diff, images_diff_expected,
                                         boxes_diff, boxes_diff_expected])
      self.assertAllClose(boxes_diff_, boxes_diff_expected_)
      self.assertAllClose(images_diff_, images_diff_expected_) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:32,代码来源:preprocessor_test.py

示例8: testRandomHorizontalFlipWithCache

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import random_horizontal_flip [as 别名]
def testRandomHorizontalFlipWithCache(self):
    keypoint_flip_permutation = self.createKeypointFlipPermutation()
    preprocess_options = [
        (preprocessor.random_horizontal_flip,
         {'keypoint_flip_permutation': keypoint_flip_permutation})]
    self._testPreprocessorCache(preprocess_options,
                                test_boxes=True,
                                test_masks=True,
                                test_keypoints=True) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:11,代码来源:preprocessor_test.py


注:本文中的object_detection.core.preprocessor.random_horizontal_flip方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。