本文整理汇总了Python中object_detection.core.preprocessor.get_default_func_arg_map方法的典型用法代码示例。如果您正苦于以下问题:Python preprocessor.get_default_func_arg_map方法的具体用法?Python preprocessor.get_default_func_arg_map怎么用?Python preprocessor.get_default_func_arg_map使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类object_detection.core.preprocessor
的用法示例。
在下文中一共展示了preprocessor.get_default_func_arg_map方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testRunRandomHorizontalFlipWithMaskAndKeypoints
# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import get_default_func_arg_map [as 别名]
def testRunRandomHorizontalFlipWithMaskAndKeypoints(self):
preprocess_options = [(preprocessor.random_horizontal_flip, {})]
image_height = 3
image_width = 3
images = tf.random_uniform([1, image_height, image_width, 3])
boxes = self.createTestBoxes()
masks = self.createTestMasks()
keypoints = self.createTestKeypoints()
keypoint_flip_permutation = self.createKeypointFlipPermutation()
tensor_dict = {
fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_instance_masks: masks,
fields.InputDataFields.groundtruth_keypoints: keypoints
}
preprocess_options = [
(preprocessor.random_horizontal_flip,
{'keypoint_flip_permutation': keypoint_flip_permutation})]
preprocessor_arg_map = preprocessor.get_default_func_arg_map(
include_instance_masks=True, include_keypoints=True)
tensor_dict = preprocessor.preprocess(
tensor_dict, preprocess_options, func_arg_map=preprocessor_arg_map)
boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
masks = tensor_dict[fields.InputDataFields.groundtruth_instance_masks]
keypoints = tensor_dict[fields.InputDataFields.groundtruth_keypoints]
with self.test_session() as sess:
boxes, masks, keypoints = sess.run([boxes, masks, keypoints])
self.assertTrue(boxes is not None)
self.assertTrue(masks is not None)
self.assertTrue(keypoints is not None)
示例2: testRunRetainBoxesAboveThresholdWithMasks
# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import get_default_func_arg_map [as 别名]
def testRunRetainBoxesAboveThresholdWithMasks(self):
boxes = self.createTestBoxes()
labels = self.createTestLabels()
label_scores = self.createTestLabelScores()
masks = self.createTestMasks()
tensor_dict = {
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels,
fields.InputDataFields.groundtruth_label_scores: label_scores,
fields.InputDataFields.groundtruth_instance_masks: masks
}
preprocessor_arg_map = preprocessor.get_default_func_arg_map(
include_instance_masks=True)
preprocessing_options = [
(preprocessor.retain_boxes_above_threshold, {'threshold': 0.6})
]
retained_tensor_dict = preprocessor.preprocess(
tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map)
retained_masks = retained_tensor_dict[
fields.InputDataFields.groundtruth_instance_masks]
with self.test_session() as sess:
(retained_masks_, expected_masks_) = sess.run(
[retained_masks,
self.expectedMasksAfterThresholding()])
self.assertAllClose(retained_masks_, expected_masks_)
示例3: testSSDRandomCropFixedAspectRatioWithMasksAndKeypoints
# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import get_default_func_arg_map [as 别名]
def testSSDRandomCropFixedAspectRatioWithMasksAndKeypoints(self):
images = self.createTestImages()
boxes = self.createTestBoxes()
labels = self.createTestLabels()
masks = self.createTestMasks()
keypoints = self.createTestKeypoints()
preprocessing_options = [
(preprocessor.normalize_image, {
'original_minval': 0,
'original_maxval': 255,
'target_minval': 0,
'target_maxval': 1
}),
(preprocessor.ssd_random_crop_fixed_aspect_ratio, {})]
tensor_dict = {
fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels,
fields.InputDataFields.groundtruth_instance_masks: masks,
fields.InputDataFields.groundtruth_keypoints: keypoints,
}
preprocessor_arg_map = preprocessor.get_default_func_arg_map(
include_instance_masks=True, include_keypoints=True)
distorted_tensor_dict = preprocessor.preprocess(
tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map)
distorted_images = distorted_tensor_dict[fields.InputDataFields.image]
distorted_boxes = distorted_tensor_dict[
fields.InputDataFields.groundtruth_boxes]
images_rank = tf.rank(images)
distorted_images_rank = tf.rank(distorted_images)
boxes_rank = tf.rank(boxes)
distorted_boxes_rank = tf.rank(distorted_boxes)
with self.test_session() as sess:
(boxes_rank_, distorted_boxes_rank_, images_rank_,
distorted_images_rank_) = sess.run(
[boxes_rank, distorted_boxes_rank, images_rank,
distorted_images_rank])
self.assertAllEqual(boxes_rank_, distorted_boxes_rank_)
self.assertAllEqual(images_rank_, distorted_images_rank_)
示例4: augment_input_data
# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import get_default_func_arg_map [as 别名]
def augment_input_data(tensor_dict, data_augmentation_options):
"""Applies data augmentation ops to input tensors.
Args:
tensor_dict: A dictionary of input tensors keyed by fields.InputDataFields.
data_augmentation_options: A list of tuples, where each tuple contains a
function and a dictionary that contains arguments and their values.
Usually, this is the output of core/preprocessor.build.
Returns:
A dictionary of tensors obtained by applying data augmentation ops to the
input tensor dictionary.
"""
tensor_dict[fields.InputDataFields.image] = tf.expand_dims(
tf.to_float(tensor_dict[fields.InputDataFields.image]), 0)
include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks
in tensor_dict)
include_keypoints = (fields.InputDataFields.groundtruth_keypoints
in tensor_dict)
tensor_dict = preprocessor.preprocess(
tensor_dict, data_augmentation_options,
func_arg_map=preprocessor.get_default_func_arg_map(
include_instance_masks=include_instance_masks,
include_keypoints=include_keypoints))
tensor_dict[fields.InputDataFields.image] = tf.squeeze(
tensor_dict[fields.InputDataFields.image], axis=0)
return tensor_dict
示例5: testRunRandomVerticalFlipWithMaskAndKeypoints
# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import get_default_func_arg_map [as 别名]
def testRunRandomVerticalFlipWithMaskAndKeypoints(self):
preprocess_options = [(preprocessor.random_vertical_flip, {})]
image_height = 3
image_width = 3
images = tf.random_uniform([1, image_height, image_width, 3])
boxes = self.createTestBoxes()
masks = self.createTestMasks()
keypoints = self.createTestKeypoints()
keypoint_flip_permutation = self.createKeypointFlipPermutation()
tensor_dict = {
fields.InputDataFields.image: images,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_instance_masks: masks,
fields.InputDataFields.groundtruth_keypoints: keypoints
}
preprocess_options = [
(preprocessor.random_vertical_flip,
{'keypoint_flip_permutation': keypoint_flip_permutation})]
preprocessor_arg_map = preprocessor.get_default_func_arg_map(
include_instance_masks=True, include_keypoints=True)
tensor_dict = preprocessor.preprocess(
tensor_dict, preprocess_options, func_arg_map=preprocessor_arg_map)
boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
masks = tensor_dict[fields.InputDataFields.groundtruth_instance_masks]
keypoints = tensor_dict[fields.InputDataFields.groundtruth_keypoints]
with self.test_session() as sess:
boxes, masks, keypoints = sess.run([boxes, masks, keypoints])
self.assertTrue(boxes is not None)
self.assertTrue(masks is not None)
self.assertTrue(keypoints is not None)
示例6: testRunRetainBoxesAboveThreshold
# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import get_default_func_arg_map [as 别名]
def testRunRetainBoxesAboveThreshold(self):
boxes = self.createTestBoxes()
labels = self.createTestLabels()
weights = self.createTestGroundtruthWeights()
tensor_dict = {
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels,
fields.InputDataFields.groundtruth_weights: weights,
}
preprocessing_options = [
(preprocessor.retain_boxes_above_threshold, {'threshold': 0.6})
]
preprocessor_arg_map = preprocessor.get_default_func_arg_map()
retained_tensor_dict = preprocessor.preprocess(
tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map)
retained_boxes = retained_tensor_dict[
fields.InputDataFields.groundtruth_boxes]
retained_labels = retained_tensor_dict[
fields.InputDataFields.groundtruth_classes]
retained_weights = retained_tensor_dict[
fields.InputDataFields.groundtruth_weights]
with self.test_session() as sess:
(retained_boxes_, retained_labels_,
retained_weights_, expected_retained_boxes_,
expected_retained_labels_, expected_retained_weights_) = sess.run(
[retained_boxes, retained_labels, retained_weights,
self.expectedBoxesAfterThresholding(),
self.expectedLabelsAfterThresholding(),
self.expectedLabelScoresAfterThresholding()])
self.assertAllClose(retained_boxes_, expected_retained_boxes_)
self.assertAllClose(retained_labels_, expected_retained_labels_)
self.assertAllClose(
retained_weights_, expected_retained_weights_)
示例7: testRunRetainBoxesAboveThresholdWithMasks
# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import get_default_func_arg_map [as 别名]
def testRunRetainBoxesAboveThresholdWithMasks(self):
boxes = self.createTestBoxes()
labels = self.createTestLabels()
weights = self.createTestGroundtruthWeights()
masks = self.createTestMasks()
tensor_dict = {
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels,
fields.InputDataFields.groundtruth_weights: weights,
fields.InputDataFields.groundtruth_instance_masks: masks
}
preprocessor_arg_map = preprocessor.get_default_func_arg_map(
include_label_scores=True,
include_instance_masks=True)
preprocessing_options = [
(preprocessor.retain_boxes_above_threshold, {'threshold': 0.6})
]
retained_tensor_dict = preprocessor.preprocess(
tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map)
retained_masks = retained_tensor_dict[
fields.InputDataFields.groundtruth_instance_masks]
with self.test_session() as sess:
(retained_masks_, expected_masks_) = sess.run(
[retained_masks,
self.expectedMasksAfterThresholding()])
self.assertAllClose(retained_masks_, expected_masks_)
示例8: testRunRandomPadToAspectRatioWithMinMaxPaddedSizeRatios
# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import get_default_func_arg_map [as 别名]
def testRunRandomPadToAspectRatioWithMinMaxPaddedSizeRatios(self):
image = self.createColorfulTestImage()
boxes = self.createTestBoxes()
labels = self.createTestLabels()
tensor_dict = {
fields.InputDataFields.image: image,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels
}
preprocessor_arg_map = preprocessor.get_default_func_arg_map()
preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio,
{'min_padded_size_ratio': (4.0, 4.0),
'max_padded_size_ratio': (4.0, 4.0)})]
distorted_tensor_dict = preprocessor.preprocess(
tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map)
distorted_image = distorted_tensor_dict[fields.InputDataFields.image]
distorted_boxes = distorted_tensor_dict[
fields.InputDataFields.groundtruth_boxes]
distorted_labels = distorted_tensor_dict[
fields.InputDataFields.groundtruth_classes]
with self.test_session() as sess:
distorted_image_, distorted_boxes_, distorted_labels_ = sess.run([
distorted_image, distorted_boxes, distorted_labels])
expected_boxes = np.array(
[[0.0, 0.125, 0.1875, 0.5], [0.0625, 0.25, 0.1875, 0.5]],
dtype=np.float32)
self.assertAllEqual(distorted_image_.shape, [1, 800, 800, 3])
self.assertAllEqual(distorted_labels_, [1, 2])
self.assertAllClose(distorted_boxes_.flatten(),
expected_boxes.flatten())
示例9: testRunRandomPadToAspectRatioWithMasks
# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import get_default_func_arg_map [as 别名]
def testRunRandomPadToAspectRatioWithMasks(self):
image = self.createColorfulTestImage()
boxes = self.createTestBoxes()
labels = self.createTestLabels()
masks = tf.random_uniform([2, 200, 400], dtype=tf.float32)
tensor_dict = {
fields.InputDataFields.image: image,
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels,
fields.InputDataFields.groundtruth_instance_masks: masks
}
preprocessor_arg_map = preprocessor.get_default_func_arg_map(
include_instance_masks=True)
preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, {})]
distorted_tensor_dict = preprocessor.preprocess(
tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map)
distorted_image = distorted_tensor_dict[fields.InputDataFields.image]
distorted_boxes = distorted_tensor_dict[
fields.InputDataFields.groundtruth_boxes]
distorted_labels = distorted_tensor_dict[
fields.InputDataFields.groundtruth_classes]
distorted_masks = distorted_tensor_dict[
fields.InputDataFields.groundtruth_instance_masks]
with self.test_session() as sess:
(distorted_image_, distorted_boxes_, distorted_labels_,
distorted_masks_) = sess.run([
distorted_image, distorted_boxes, distorted_labels, distorted_masks
])
expected_boxes = np.array(
[[0.0, 0.25, 0.375, 1.0], [0.125, 0.5, 0.375, 1.0]], dtype=np.float32)
self.assertAllEqual(distorted_image_.shape, [1, 400, 400, 3])
self.assertAllEqual(distorted_labels_, [1, 2])
self.assertAllClose(distorted_boxes_.flatten(),
expected_boxes.flatten())
self.assertAllEqual(distorted_masks_.shape, [2, 400, 400])
示例10: testRunRetainBoxesAboveThreshold
# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import get_default_func_arg_map [as 别名]
def testRunRetainBoxesAboveThreshold(self):
boxes = self.createTestBoxes()
labels = self.createTestLabels()
label_scores = self.createTestLabelScores()
tensor_dict = {
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels,
fields.InputDataFields.groundtruth_label_scores: label_scores
}
preprocessing_options = [
(preprocessor.retain_boxes_above_threshold, {'threshold': 0.6})
]
preprocessor_arg_map = preprocessor.get_default_func_arg_map(
include_label_scores=True)
retained_tensor_dict = preprocessor.preprocess(
tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map)
retained_boxes = retained_tensor_dict[
fields.InputDataFields.groundtruth_boxes]
retained_labels = retained_tensor_dict[
fields.InputDataFields.groundtruth_classes]
retained_label_scores = retained_tensor_dict[
fields.InputDataFields.groundtruth_label_scores]
with self.test_session() as sess:
(retained_boxes_, retained_labels_,
retained_label_scores_, expected_retained_boxes_,
expected_retained_labels_, expected_retained_label_scores_) = sess.run(
[retained_boxes, retained_labels, retained_label_scores,
self.expectedBoxesAfterThresholding(),
self.expectedLabelsAfterThresholding(),
self.expectedLabelScoresAfterThresholding()])
self.assertAllClose(retained_boxes_, expected_retained_boxes_)
self.assertAllClose(retained_labels_, expected_retained_labels_)
self.assertAllClose(
retained_label_scores_, expected_retained_label_scores_)
示例11: testRunRetainBoxesAboveThresholdWithMasks
# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import get_default_func_arg_map [as 别名]
def testRunRetainBoxesAboveThresholdWithMasks(self):
boxes = self.createTestBoxes()
labels = self.createTestLabels()
label_scores = self.createTestLabelScores()
masks = self.createTestMasks()
tensor_dict = {
fields.InputDataFields.groundtruth_boxes: boxes,
fields.InputDataFields.groundtruth_classes: labels,
fields.InputDataFields.groundtruth_label_scores: label_scores,
fields.InputDataFields.groundtruth_instance_masks: masks
}
preprocessor_arg_map = preprocessor.get_default_func_arg_map(
include_label_scores=True,
include_instance_masks=True)
preprocessing_options = [
(preprocessor.retain_boxes_above_threshold, {'threshold': 0.6})
]
retained_tensor_dict = preprocessor.preprocess(
tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map)
retained_masks = retained_tensor_dict[
fields.InputDataFields.groundtruth_instance_masks]
with self.test_session() as sess:
(retained_masks_, expected_masks_) = sess.run(
[retained_masks,
self.expectedMasksAfterThresholding()])
self.assertAllClose(retained_masks_, expected_masks_)