当前位置: 首页>>代码示例>>Python>>正文


Python preprocessor.get_default_func_arg_map方法代码示例

本文整理汇总了Python中object_detection.core.preprocessor.get_default_func_arg_map方法的典型用法代码示例。如果您正苦于以下问题:Python preprocessor.get_default_func_arg_map方法的具体用法?Python preprocessor.get_default_func_arg_map怎么用?Python preprocessor.get_default_func_arg_map使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.core.preprocessor的用法示例。


在下文中一共展示了preprocessor.get_default_func_arg_map方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testRunRandomHorizontalFlipWithMaskAndKeypoints

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import get_default_func_arg_map [as 别名]
def testRunRandomHorizontalFlipWithMaskAndKeypoints(self):
    preprocess_options = [(preprocessor.random_horizontal_flip, {})]
    image_height = 3
    image_width = 3
    images = tf.random_uniform([1, image_height, image_width, 3])
    boxes = self.createTestBoxes()
    masks = self.createTestMasks()
    keypoints = self.createTestKeypoints()
    keypoint_flip_permutation = self.createKeypointFlipPermutation()
    tensor_dict = {
        fields.InputDataFields.image: images,
        fields.InputDataFields.groundtruth_boxes: boxes,
        fields.InputDataFields.groundtruth_instance_masks: masks,
        fields.InputDataFields.groundtruth_keypoints: keypoints
    }
    preprocess_options = [
        (preprocessor.random_horizontal_flip,
         {'keypoint_flip_permutation': keypoint_flip_permutation})]
    preprocessor_arg_map = preprocessor.get_default_func_arg_map(
        include_instance_masks=True, include_keypoints=True)
    tensor_dict = preprocessor.preprocess(
        tensor_dict, preprocess_options, func_arg_map=preprocessor_arg_map)
    boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
    masks = tensor_dict[fields.InputDataFields.groundtruth_instance_masks]
    keypoints = tensor_dict[fields.InputDataFields.groundtruth_keypoints]
    with self.test_session() as sess:
      boxes, masks, keypoints = sess.run([boxes, masks, keypoints])
      self.assertTrue(boxes is not None)
      self.assertTrue(masks is not None)
      self.assertTrue(keypoints is not None) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:32,代码来源:preprocessor_test.py

示例2: testRunRetainBoxesAboveThresholdWithMasks

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import get_default_func_arg_map [as 别名]
def testRunRetainBoxesAboveThresholdWithMasks(self):
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()
    label_scores = self.createTestLabelScores()
    masks = self.createTestMasks()

    tensor_dict = {
        fields.InputDataFields.groundtruth_boxes: boxes,
        fields.InputDataFields.groundtruth_classes: labels,
        fields.InputDataFields.groundtruth_label_scores: label_scores,
        fields.InputDataFields.groundtruth_instance_masks: masks
    }

    preprocessor_arg_map = preprocessor.get_default_func_arg_map(
        include_instance_masks=True)

    preprocessing_options = [
        (preprocessor.retain_boxes_above_threshold, {'threshold': 0.6})
    ]

    retained_tensor_dict = preprocessor.preprocess(
        tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map)
    retained_masks = retained_tensor_dict[
        fields.InputDataFields.groundtruth_instance_masks]

    with self.test_session() as sess:
      (retained_masks_, expected_masks_) = sess.run(
          [retained_masks,
           self.expectedMasksAfterThresholding()])
      self.assertAllClose(retained_masks_, expected_masks_) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:32,代码来源:preprocessor_test.py

示例3: testSSDRandomCropFixedAspectRatioWithMasksAndKeypoints

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import get_default_func_arg_map [as 别名]
def testSSDRandomCropFixedAspectRatioWithMasksAndKeypoints(self):
    images = self.createTestImages()
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()
    masks = self.createTestMasks()
    keypoints = self.createTestKeypoints()
    preprocessing_options = [
        (preprocessor.normalize_image, {
            'original_minval': 0,
            'original_maxval': 255,
            'target_minval': 0,
            'target_maxval': 1
        }),
        (preprocessor.ssd_random_crop_fixed_aspect_ratio, {})]
    tensor_dict = {
        fields.InputDataFields.image: images,
        fields.InputDataFields.groundtruth_boxes: boxes,
        fields.InputDataFields.groundtruth_classes: labels,
        fields.InputDataFields.groundtruth_instance_masks: masks,
        fields.InputDataFields.groundtruth_keypoints: keypoints,
    }
    preprocessor_arg_map = preprocessor.get_default_func_arg_map(
        include_instance_masks=True, include_keypoints=True)
    distorted_tensor_dict = preprocessor.preprocess(
        tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map)
    distorted_images = distorted_tensor_dict[fields.InputDataFields.image]
    distorted_boxes = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_boxes]

    images_rank = tf.rank(images)
    distorted_images_rank = tf.rank(distorted_images)
    boxes_rank = tf.rank(boxes)
    distorted_boxes_rank = tf.rank(distorted_boxes)

    with self.test_session() as sess:
      (boxes_rank_, distorted_boxes_rank_, images_rank_,
       distorted_images_rank_) = sess.run(
           [boxes_rank, distorted_boxes_rank, images_rank,
            distorted_images_rank])
      self.assertAllEqual(boxes_rank_, distorted_boxes_rank_)
      self.assertAllEqual(images_rank_, distorted_images_rank_) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:43,代码来源:preprocessor_test.py

示例4: augment_input_data

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import get_default_func_arg_map [as 别名]
def augment_input_data(tensor_dict, data_augmentation_options):
  """Applies data augmentation ops to input tensors.

  Args:
    tensor_dict: A dictionary of input tensors keyed by fields.InputDataFields.
    data_augmentation_options: A list of tuples, where each tuple contains a
      function and a dictionary that contains arguments and their values.
      Usually, this is the output of core/preprocessor.build.

  Returns:
    A dictionary of tensors obtained by applying data augmentation ops to the
    input tensor dictionary.
  """
  tensor_dict[fields.InputDataFields.image] = tf.expand_dims(
      tf.to_float(tensor_dict[fields.InputDataFields.image]), 0)

  include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks
                            in tensor_dict)
  include_keypoints = (fields.InputDataFields.groundtruth_keypoints
                       in tensor_dict)
  tensor_dict = preprocessor.preprocess(
      tensor_dict, data_augmentation_options,
      func_arg_map=preprocessor.get_default_func_arg_map(
          include_instance_masks=include_instance_masks,
          include_keypoints=include_keypoints))
  tensor_dict[fields.InputDataFields.image] = tf.squeeze(
      tensor_dict[fields.InputDataFields.image], axis=0)
  return tensor_dict 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:30,代码来源:inputs.py

示例5: testRunRandomVerticalFlipWithMaskAndKeypoints

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import get_default_func_arg_map [as 别名]
def testRunRandomVerticalFlipWithMaskAndKeypoints(self):
    preprocess_options = [(preprocessor.random_vertical_flip, {})]
    image_height = 3
    image_width = 3
    images = tf.random_uniform([1, image_height, image_width, 3])
    boxes = self.createTestBoxes()
    masks = self.createTestMasks()
    keypoints = self.createTestKeypoints()
    keypoint_flip_permutation = self.createKeypointFlipPermutation()
    tensor_dict = {
        fields.InputDataFields.image: images,
        fields.InputDataFields.groundtruth_boxes: boxes,
        fields.InputDataFields.groundtruth_instance_masks: masks,
        fields.InputDataFields.groundtruth_keypoints: keypoints
    }
    preprocess_options = [
        (preprocessor.random_vertical_flip,
         {'keypoint_flip_permutation': keypoint_flip_permutation})]
    preprocessor_arg_map = preprocessor.get_default_func_arg_map(
        include_instance_masks=True, include_keypoints=True)
    tensor_dict = preprocessor.preprocess(
        tensor_dict, preprocess_options, func_arg_map=preprocessor_arg_map)
    boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
    masks = tensor_dict[fields.InputDataFields.groundtruth_instance_masks]
    keypoints = tensor_dict[fields.InputDataFields.groundtruth_keypoints]
    with self.test_session() as sess:
      boxes, masks, keypoints = sess.run([boxes, masks, keypoints])
      self.assertTrue(boxes is not None)
      self.assertTrue(masks is not None)
      self.assertTrue(keypoints is not None) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:32,代码来源:preprocessor_test.py

示例6: testRunRetainBoxesAboveThreshold

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import get_default_func_arg_map [as 别名]
def testRunRetainBoxesAboveThreshold(self):
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()
    weights = self.createTestGroundtruthWeights()

    tensor_dict = {
        fields.InputDataFields.groundtruth_boxes: boxes,
        fields.InputDataFields.groundtruth_classes: labels,
        fields.InputDataFields.groundtruth_weights: weights,
    }

    preprocessing_options = [
        (preprocessor.retain_boxes_above_threshold, {'threshold': 0.6})
    ]
    preprocessor_arg_map = preprocessor.get_default_func_arg_map()
    retained_tensor_dict = preprocessor.preprocess(
        tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map)
    retained_boxes = retained_tensor_dict[
        fields.InputDataFields.groundtruth_boxes]
    retained_labels = retained_tensor_dict[
        fields.InputDataFields.groundtruth_classes]
    retained_weights = retained_tensor_dict[
        fields.InputDataFields.groundtruth_weights]

    with self.test_session() as sess:
      (retained_boxes_, retained_labels_,
       retained_weights_, expected_retained_boxes_,
       expected_retained_labels_, expected_retained_weights_) = sess.run(
           [retained_boxes, retained_labels, retained_weights,
            self.expectedBoxesAfterThresholding(),
            self.expectedLabelsAfterThresholding(),
            self.expectedLabelScoresAfterThresholding()])

      self.assertAllClose(retained_boxes_, expected_retained_boxes_)
      self.assertAllClose(retained_labels_, expected_retained_labels_)
      self.assertAllClose(
          retained_weights_, expected_retained_weights_) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:39,代码来源:preprocessor_test.py

示例7: testRunRetainBoxesAboveThresholdWithMasks

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import get_default_func_arg_map [as 别名]
def testRunRetainBoxesAboveThresholdWithMasks(self):
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()
    weights = self.createTestGroundtruthWeights()
    masks = self.createTestMasks()

    tensor_dict = {
        fields.InputDataFields.groundtruth_boxes: boxes,
        fields.InputDataFields.groundtruth_classes: labels,
        fields.InputDataFields.groundtruth_weights: weights,
        fields.InputDataFields.groundtruth_instance_masks: masks
    }

    preprocessor_arg_map = preprocessor.get_default_func_arg_map(
        include_label_scores=True,
        include_instance_masks=True)

    preprocessing_options = [
        (preprocessor.retain_boxes_above_threshold, {'threshold': 0.6})
    ]

    retained_tensor_dict = preprocessor.preprocess(
        tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map)
    retained_masks = retained_tensor_dict[
        fields.InputDataFields.groundtruth_instance_masks]

    with self.test_session() as sess:
      (retained_masks_, expected_masks_) = sess.run(
          [retained_masks,
           self.expectedMasksAfterThresholding()])
      self.assertAllClose(retained_masks_, expected_masks_) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:33,代码来源:preprocessor_test.py

示例8: testRunRandomPadToAspectRatioWithMinMaxPaddedSizeRatios

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import get_default_func_arg_map [as 别名]
def testRunRandomPadToAspectRatioWithMinMaxPaddedSizeRatios(self):
    image = self.createColorfulTestImage()
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()

    tensor_dict = {
        fields.InputDataFields.image: image,
        fields.InputDataFields.groundtruth_boxes: boxes,
        fields.InputDataFields.groundtruth_classes: labels
    }

    preprocessor_arg_map = preprocessor.get_default_func_arg_map()
    preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio,
                              {'min_padded_size_ratio': (4.0, 4.0),
                               'max_padded_size_ratio': (4.0, 4.0)})]

    distorted_tensor_dict = preprocessor.preprocess(
        tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map)
    distorted_image = distorted_tensor_dict[fields.InputDataFields.image]
    distorted_boxes = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_boxes]
    distorted_labels = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_classes]
    with self.test_session() as sess:
      distorted_image_, distorted_boxes_, distorted_labels_ = sess.run([
          distorted_image, distorted_boxes, distorted_labels])

      expected_boxes = np.array(
          [[0.0, 0.125, 0.1875, 0.5], [0.0625, 0.25, 0.1875, 0.5]],
          dtype=np.float32)
      self.assertAllEqual(distorted_image_.shape, [1, 800, 800, 3])
      self.assertAllEqual(distorted_labels_, [1, 2])
      self.assertAllClose(distorted_boxes_.flatten(),
                          expected_boxes.flatten()) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:36,代码来源:preprocessor_test.py

示例9: testRunRandomPadToAspectRatioWithMasks

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import get_default_func_arg_map [as 别名]
def testRunRandomPadToAspectRatioWithMasks(self):
    image = self.createColorfulTestImage()
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()
    masks = tf.random_uniform([2, 200, 400], dtype=tf.float32)

    tensor_dict = {
        fields.InputDataFields.image: image,
        fields.InputDataFields.groundtruth_boxes: boxes,
        fields.InputDataFields.groundtruth_classes: labels,
        fields.InputDataFields.groundtruth_instance_masks: masks
    }

    preprocessor_arg_map = preprocessor.get_default_func_arg_map(
        include_instance_masks=True)

    preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, {})]

    distorted_tensor_dict = preprocessor.preprocess(
        tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map)
    distorted_image = distorted_tensor_dict[fields.InputDataFields.image]
    distorted_boxes = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_boxes]
    distorted_labels = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_classes]
    distorted_masks = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_instance_masks]
    with self.test_session() as sess:
      (distorted_image_, distorted_boxes_, distorted_labels_,
       distorted_masks_) = sess.run([
           distorted_image, distorted_boxes, distorted_labels, distorted_masks
       ])

      expected_boxes = np.array(
          [[0.0, 0.25, 0.375, 1.0], [0.125, 0.5, 0.375, 1.0]], dtype=np.float32)
      self.assertAllEqual(distorted_image_.shape, [1, 400, 400, 3])
      self.assertAllEqual(distorted_labels_, [1, 2])
      self.assertAllClose(distorted_boxes_.flatten(),
                          expected_boxes.flatten())
      self.assertAllEqual(distorted_masks_.shape, [2, 400, 400]) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:42,代码来源:preprocessor_test.py

示例10: testRunRetainBoxesAboveThreshold

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import get_default_func_arg_map [as 别名]
def testRunRetainBoxesAboveThreshold(self):
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()
    label_scores = self.createTestLabelScores()

    tensor_dict = {
        fields.InputDataFields.groundtruth_boxes: boxes,
        fields.InputDataFields.groundtruth_classes: labels,
        fields.InputDataFields.groundtruth_label_scores: label_scores
    }

    preprocessing_options = [
        (preprocessor.retain_boxes_above_threshold, {'threshold': 0.6})
    ]
    preprocessor_arg_map = preprocessor.get_default_func_arg_map(
        include_label_scores=True)
    retained_tensor_dict = preprocessor.preprocess(
        tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map)
    retained_boxes = retained_tensor_dict[
        fields.InputDataFields.groundtruth_boxes]
    retained_labels = retained_tensor_dict[
        fields.InputDataFields.groundtruth_classes]
    retained_label_scores = retained_tensor_dict[
        fields.InputDataFields.groundtruth_label_scores]

    with self.test_session() as sess:
      (retained_boxes_, retained_labels_,
       retained_label_scores_, expected_retained_boxes_,
       expected_retained_labels_, expected_retained_label_scores_) = sess.run(
           [retained_boxes, retained_labels, retained_label_scores,
            self.expectedBoxesAfterThresholding(),
            self.expectedLabelsAfterThresholding(),
            self.expectedLabelScoresAfterThresholding()])

      self.assertAllClose(retained_boxes_, expected_retained_boxes_)
      self.assertAllClose(retained_labels_, expected_retained_labels_)
      self.assertAllClose(
          retained_label_scores_, expected_retained_label_scores_) 
开发者ID:cagbal,项目名称:ros_people_object_detection_tensorflow,代码行数:40,代码来源:preprocessor_test.py

示例11: testRunRetainBoxesAboveThresholdWithMasks

# 需要导入模块: from object_detection.core import preprocessor [as 别名]
# 或者: from object_detection.core.preprocessor import get_default_func_arg_map [as 别名]
def testRunRetainBoxesAboveThresholdWithMasks(self):
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()
    label_scores = self.createTestLabelScores()
    masks = self.createTestMasks()

    tensor_dict = {
        fields.InputDataFields.groundtruth_boxes: boxes,
        fields.InputDataFields.groundtruth_classes: labels,
        fields.InputDataFields.groundtruth_label_scores: label_scores,
        fields.InputDataFields.groundtruth_instance_masks: masks
    }

    preprocessor_arg_map = preprocessor.get_default_func_arg_map(
        include_label_scores=True,
        include_instance_masks=True)

    preprocessing_options = [
        (preprocessor.retain_boxes_above_threshold, {'threshold': 0.6})
    ]

    retained_tensor_dict = preprocessor.preprocess(
        tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map)
    retained_masks = retained_tensor_dict[
        fields.InputDataFields.groundtruth_instance_masks]

    with self.test_session() as sess:
      (retained_masks_, expected_masks_) = sess.run(
          [retained_masks,
           self.expectedMasksAfterThresholding()])
      self.assertAllClose(retained_masks_, expected_masks_) 
开发者ID:cagbal,项目名称:ros_people_object_detection_tensorflow,代码行数:33,代码来源:preprocessor_test.py


注:本文中的object_detection.core.preprocessor.get_default_func_arg_map方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。