当前位置: 首页>>代码示例>>Python>>正文


Python prefetcher.prefetch方法代码示例

本文整理汇总了Python中object_detection.core.prefetcher.prefetch方法的典型用法代码示例。如果您正苦于以下问题:Python prefetcher.prefetch方法的具体用法?Python prefetcher.prefetch怎么用?Python prefetcher.prefetch使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.core.prefetcher的用法示例。


在下文中一共展示了prefetcher.prefetch方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_prefetch_tensors_with_fully_defined_shapes

# 需要导入模块: from object_detection.core import prefetcher [as 别名]
# 或者: from object_detection.core.prefetcher import prefetch [as 别名]
def test_prefetch_tensors_with_fully_defined_shapes(self):
    with self.test_session() as sess:
      batch_size = 10
      image_size = 32
      num_batches = 5
      examples = tf.Variable(tf.constant(0, dtype=tf.int64))
      counter = examples.count_up_to(num_batches)
      image = tf.random_normal([batch_size, image_size,
                                image_size, 3],
                               dtype=tf.float32,
                               name='images')
      label = tf.random_uniform([batch_size, 1], 0, 10,
                                dtype=tf.int32, name='labels')

      prefetch_queue = prefetcher.prefetch(tensor_dict={'counter': counter,
                                                        'image': image,
                                                        'label': label},
                                           capacity=100)
      tensor_dict = prefetch_queue.dequeue()

      self.assertAllEqual(tensor_dict['image'].get_shape().as_list(),
                          [batch_size, image_size, image_size, 3])
      self.assertAllEqual(tensor_dict['label'].get_shape().as_list(),
                          [batch_size, 1])

      tf.initialize_all_variables().run()
      with slim.queues.QueueRunners(sess):
        for _ in range(num_batches):
          results = sess.run(tensor_dict)
          self.assertEquals(results['image'].shape,
                            (batch_size, image_size, image_size, 3))
          self.assertEquals(results['label'].shape, (batch_size, 1))
        with self.assertRaises(tf.errors.OutOfRangeError):
          sess.run(tensor_dict) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:36,代码来源:prefetcher_test.py

示例2: test_prefetch_tensors_with_partially_defined_shapes

# 需要导入模块: from object_detection.core import prefetcher [as 别名]
# 或者: from object_detection.core.prefetcher import prefetch [as 别名]
def test_prefetch_tensors_with_partially_defined_shapes(self):
    with self.test_session() as sess:
      batch_size = 10
      image_size = 32
      num_batches = 5
      examples = tf.Variable(tf.constant(0, dtype=tf.int64))
      counter = examples.count_up_to(num_batches)
      image = tf.random_normal([batch_size,
                                tf.Variable(image_size),
                                tf.Variable(image_size), 3],
                               dtype=tf.float32,
                               name='image')
      image.set_shape([batch_size, None, None, 3])
      label = tf.random_uniform([batch_size, tf.Variable(1)], 0,
                                10, dtype=tf.int32, name='label')
      label.set_shape([batch_size, None])

      prefetch_queue = prefetcher.prefetch(tensor_dict={'counter': counter,
                                                        'image': image,
                                                        'label': label},
                                           capacity=100)
      tensor_dict = prefetch_queue.dequeue()

      self.assertAllEqual(tensor_dict['image'].get_shape().as_list(),
                          [batch_size, None, None, 3])
      self.assertAllEqual(tensor_dict['label'].get_shape().as_list(),
                          [batch_size, None])

      tf.initialize_all_variables().run()
      with slim.queues.QueueRunners(sess):
        for _ in range(num_batches):
          results = sess.run(tensor_dict)
          self.assertEquals(results['image'].shape,
                            (batch_size, image_size, image_size, 3))
          self.assertEquals(results['label'].shape, (batch_size, 1))
        with self.assertRaises(tf.errors.OutOfRangeError):
          sess.run(tensor_dict) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:39,代码来源:prefetcher_test.py

示例3: __init__

# 需要导入模块: from object_detection.core import prefetcher [as 别名]
# 或者: from object_detection.core.prefetcher import prefetch [as 别名]
def __init__(self, tensor_dict, batch_size, batch_queue_capacity,
               num_batch_queue_threads, prefetch_queue_capacity):
    """Constructs a batch queue holding tensor_dict.

    Args:
      tensor_dict: dictionary of tensors to batch.
      batch_size: batch size.
      batch_queue_capacity: max capacity of the queue from which the tensors are
        batched.
      num_batch_queue_threads: number of threads to use for batching.
      prefetch_queue_capacity: max capacity of the queue used to prefetch
        assembled batches.
    """
    # Remember static shapes to set shapes of batched tensors.
    static_shapes = collections.OrderedDict(
        {key: tensor.get_shape() for key, tensor in tensor_dict.items()})
    # Remember runtime shapes to unpad tensors after batching.
    runtime_shapes = collections.OrderedDict(
        {(key + rt_shape_str): tf.shape(tensor)
         for key, tensor in tensor_dict.items()})

    all_tensors = tensor_dict
    all_tensors.update(runtime_shapes)
    batched_tensors = tf.train.batch(
        all_tensors,
        capacity=batch_queue_capacity,
        batch_size=batch_size,
        dynamic_pad=True,
        num_threads=num_batch_queue_threads)

    self._queue = prefetcher.prefetch(batched_tensors,
                                      prefetch_queue_capacity)
    self._static_shapes = static_shapes
    self._batch_size = batch_size 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:36,代码来源:batcher.py

示例4: __init__

# 需要导入模块: from object_detection.core import prefetcher [as 别名]
# 或者: from object_detection.core.prefetcher import prefetch [as 别名]
def __init__(self, tensor_dict, batch_size, batch_queue_capacity,
               num_batch_queue_threads, prefetch_queue_capacity):
    """Constructs a batch queue holding tensor_dict.

    Args:
      tensor_dict: dictionary of tensors to batch.
      batch_size: batch size.
      batch_queue_capacity: max capacity of the queue from which the tensors are
        batched.
      num_batch_queue_threads: number of threads to use for batching.
      prefetch_queue_capacity: max capacity of the queue used to prefetch
        assembled batches.
    """
    # Remember static shapes to set shapes of batched tensors.
    static_shapes = collections.OrderedDict(
        {key: tensor.get_shape() for key, tensor in tensor_dict.iteritems()})
    # Remember runtime shapes to unpad tensors after batching.
    runtime_shapes = collections.OrderedDict(
        {(key, 'runtime_shapes'): tf.shape(tensor)
         for key, tensor in tensor_dict.iteritems()})
    all_tensors = tensor_dict
    all_tensors.update(runtime_shapes)
    batched_tensors = tf.train.batch(
        all_tensors,
        capacity=batch_queue_capacity,
        batch_size=batch_size,
        dynamic_pad=True,
        num_threads=num_batch_queue_threads)

    self._queue = prefetcher.prefetch(batched_tensors,
                                      prefetch_queue_capacity)
    self._static_shapes = static_shapes
    self._batch_size = batch_size 
开发者ID:datitran,项目名称:object_detector_app,代码行数:35,代码来源:batcher.py


注:本文中的object_detection.core.prefetcher.prefetch方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。