当前位置: 首页>>代码示例>>Python>>正文


Python model.DetectionModel方法代码示例

本文整理汇总了Python中object_detection.core.model.DetectionModel方法的典型用法代码示例。如果您正苦于以下问题:Python model.DetectionModel方法的具体用法?Python model.DetectionModel怎么用?Python model.DetectionModel使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.core.model的用法示例。


在下文中一共展示了model.DetectionModel方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: postprocess

# 需要导入模块: from object_detection.core import model [as 别名]
# 或者: from object_detection.core.model import DetectionModel [as 别名]
def postprocess(self, prediction_dict, **params):
    """Convert predicted output tensors to final detections. Unused.

    Args:
      prediction_dict: a dictionary holding prediction tensors.
      **params: Additional keyword arguments for specific implementations of
        DetectionModel.

    Returns:
      detections: a dictionary with empty fields.
    """
    return {
        'detection_boxes': None,
        'detection_scores': None,
        'detection_classes': None,
        'num_detections': None
    } 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:19,代码来源:trainer_test.py

示例2: postprocess

# 需要导入模块: from object_detection.core import model [as 别名]
# 或者: from object_detection.core.model import DetectionModel [as 别名]
def postprocess(self, prediction_dict, true_image_shapes, **params):
    """Convert predicted output tensors to final detections. Unused.

    Args:
      prediction_dict: a dictionary holding prediction tensors.
      true_image_shapes: int32 tensor of shape [batch, 3] where each row is
        of the form [height, width, channels] indicating the shapes
        of true images in the resized images, as resized images can be padded
        with zeros.
      **params: Additional keyword arguments for specific implementations of
        DetectionModel.

    Returns:
      detections: a dictionary with empty fields.
    """
    return {
        'detection_boxes': None,
        'detection_scores': None,
        'detection_classes': None,
        'num_detections': None
    } 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:23,代码来源:trainer_test.py

示例3: postprocess

# 需要导入模块: from object_detection.core import model [as 别名]
# 或者: from object_detection.core.model import DetectionModel [as 别名]
def postprocess(self, prediction_dict, true_image_shapes, **params):
        """Convert predicted output tensors to final detections. Unused.

        Args:
          prediction_dict: a dictionary holding prediction tensors.
          true_image_shapes: int32 tensor of shape [batch, 3] where each row is
            of the form [height, width, channels] indicating the shapes
            of true images in the resized images, as resized images can be padded
            with zeros.
          **params: Additional keyword arguments for specific implementations of
            DetectionModel.

        Returns:
          detections: a dictionary with empty fields.
        """
        return {
            'detection_boxes': None,
            'detection_scores': None,
            'detection_classes': None,
            'num_detections': None
        } 
开发者ID:scorelab,项目名称:Elphas,代码行数:23,代码来源:trainer_test.py

示例4: _format_groundtruth_data

# 需要导入模块: from object_detection.core import model [as 别名]
# 或者: from object_detection.core.model import DetectionModel [as 别名]
def _format_groundtruth_data(self, image_shape):
    """Helper function for preparing groundtruth data for target assignment.

    In order to be consistent with the model.DetectionModel interface,
    groundtruth boxes are specified in normalized coordinates and classes are
    specified as label indices with no assumed background category.  To prepare
    for target assignment, we:
    1) convert boxes to absolute coordinates,
    2) add a background class at class index 0

    Args:
      image_shape: A 1-D int32 tensor of shape [4] representing the shape of the
        input image batch.

    Returns:
      groundtruth_boxlists: A list of BoxLists containing (absolute) coordinates
        of the groundtruth boxes.
      groundtruth_classes_with_background_list: A list of 2-D one-hot
        (or k-hot) tensors of shape [num_boxes, num_classes+1] containing the
        class targets with the 0th index assumed to map to the background class.
    """
    groundtruth_boxlists = [
        box_list_ops.to_absolute_coordinates(
            box_list.BoxList(boxes), image_shape[1], image_shape[2])
        for boxes in self.groundtruth_lists(fields.BoxListFields.boxes)]
    groundtruth_classes_with_background_list = [
        tf.to_float(
            tf.pad(one_hot_encoding, [[0, 0], [1, 0]], mode='CONSTANT'))
        for one_hot_encoding in self.groundtruth_lists(
            fields.BoxListFields.classes)]
    return groundtruth_boxlists, groundtruth_classes_with_background_list 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:33,代码来源:faster_rcnn_meta_arch.py


注:本文中的object_detection.core.model.DetectionModel方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。