本文整理汇总了Python中object_detection.core.box_predictor.BoxPredictor方法的典型用法代码示例。如果您正苦于以下问题:Python box_predictor.BoxPredictor方法的具体用法?Python box_predictor.BoxPredictor怎么用?Python box_predictor.BoxPredictor使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类object_detection.core.box_predictor
的用法示例。
在下文中一共展示了box_predictor.BoxPredictor方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from object_detection.core import box_predictor [as 别名]
# 或者: from object_detection.core.box_predictor import BoxPredictor [as 别名]
def __init__(self,
is_training,
num_classes,
box_prediction_head,
class_prediction_head,
third_stage_heads):
"""Constructor.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_classes: number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
box_prediction_head: The head that predicts the boxes in second stage.
class_prediction_head: The head that predicts the classes in second stage.
third_stage_heads: A dictionary mapping head names to mask rcnn head
classes.
"""
super(MaskRCNNBoxPredictor, self).__init__(is_training, num_classes)
self._box_prediction_head = box_prediction_head
self._class_prediction_head = class_prediction_head
self._third_stage_heads = third_stage_heads
示例2: __init__
# 需要导入模块: from object_detection.core import box_predictor [as 别名]
# 或者: from object_detection.core.box_predictor import BoxPredictor [as 别名]
def __init__(self,
is_training,
num_classes,
conv_hyperparams_fn,
num_spatial_bins,
depth,
crop_size,
box_code_size):
"""Constructor.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_classes: number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
conv_hyperparams_fn: A function to construct tf-slim arg_scope with
hyperparameters for convolutional layers.
num_spatial_bins: A list of two integers `[spatial_bins_y,
spatial_bins_x]`.
depth: Target depth to reduce the input feature maps to.
crop_size: A list of two integers `[crop_height, crop_width]`.
box_code_size: Size of encoding for each box.
"""
super(RfcnBoxPredictor, self).__init__(is_training, num_classes)
self._conv_hyperparams_fn = conv_hyperparams_fn
self._num_spatial_bins = num_spatial_bins
self._depth = depth
self._crop_size = crop_size
self._box_code_size = box_code_size
示例3: __init__
# 需要导入模块: from object_detection.core import box_predictor [as 别名]
# 或者: from object_detection.core.box_predictor import BoxPredictor [as 别名]
def __init__(self,
is_training,
num_classes,
box_prediction_head,
class_prediction_head,
other_heads,
conv_hyperparams_fn,
num_layers_before_predictor,
min_depth,
max_depth):
"""Constructor.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_classes: number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
box_prediction_head: The head that predicts the boxes.
class_prediction_head: The head that predicts the classes.
other_heads: A dictionary mapping head names to convolutional
head classes.
conv_hyperparams_fn: A function to generate tf-slim arg_scope with
hyperparameters for convolution ops.
num_layers_before_predictor: Number of the additional conv layers before
the predictor.
min_depth: Minimum feature depth prior to predicting box encodings
and class predictions.
max_depth: Maximum feature depth prior to predicting box encodings
and class predictions. If max_depth is set to 0, no additional
feature map will be inserted before location and class predictions.
Raises:
ValueError: if min_depth > max_depth.
"""
super(ConvolutionalBoxPredictor, self).__init__(is_training, num_classes)
self._box_prediction_head = box_prediction_head
self._class_prediction_head = class_prediction_head
self._other_heads = other_heads
self._conv_hyperparams_fn = conv_hyperparams_fn
self._min_depth = min_depth
self._max_depth = max_depth
self._num_layers_before_predictor = num_layers_before_predictor