本文整理汇总了Python中object_detection.core.box_list_ops.prune_small_boxes方法的典型用法代码示例。如果您正苦于以下问题:Python box_list_ops.prune_small_boxes方法的具体用法?Python box_list_ops.prune_small_boxes怎么用?Python box_list_ops.prune_small_boxes使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类object_detection.core.box_list_ops
的用法示例。
在下文中一共展示了box_list_ops.prune_small_boxes方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_prune_small_boxes_prunes_boxes_with_negative_side
# 需要导入模块: from object_detection.core import box_list_ops [as 别名]
# 或者: from object_detection.core.box_list_ops import prune_small_boxes [as 别名]
def test_prune_small_boxes_prunes_boxes_with_negative_side(self):
def graph_fn():
boxes = tf.constant([[4.0, 3.0, 7.0, 5.0],
[5.0, 6.0, 10.0, 7.0],
[3.0, 4.0, 6.0, 8.0],
[14.0, 14.0, 15.0, 15.0],
[0.0, 0.0, 20.0, 20.0],
[2.0, 3.0, 1.5, 7.0], # negative height
[2.0, 3.0, 5.0, 1.7]]) # negative width
boxes = box_list.BoxList(boxes)
pruned_boxes = box_list_ops.prune_small_boxes(boxes, 3)
return pruned_boxes.get()
exp_boxes = [[3.0, 4.0, 6.0, 8.0],
[0.0, 0.0, 20.0, 20.0]]
pruned_boxes = self.execute_cpu(graph_fn, [])
self.assertAllEqual(pruned_boxes, exp_boxes)
示例2: test_prune_small_boxes
# 需要导入模块: from object_detection.core import box_list_ops [as 别名]
# 或者: from object_detection.core.box_list_ops import prune_small_boxes [as 别名]
def test_prune_small_boxes(self):
boxes = tf.constant([[4.0, 3.0, 7.0, 5.0],
[5.0, 6.0, 10.0, 7.0],
[3.0, 4.0, 6.0, 8.0],
[14.0, 14.0, 15.0, 15.0],
[0.0, 0.0, 20.0, 20.0]])
exp_boxes = [[3.0, 4.0, 6.0, 8.0],
[0.0, 0.0, 20.0, 20.0]]
boxes = box_list.BoxList(boxes)
pruned_boxes = box_list_ops.prune_small_boxes(boxes, 3)
with self.test_session() as sess:
pruned_boxes = sess.run(pruned_boxes.get())
self.assertAllEqual(pruned_boxes, exp_boxes)
示例3: test_prune_small_boxes_prunes_boxes_with_negative_side
# 需要导入模块: from object_detection.core import box_list_ops [as 别名]
# 或者: from object_detection.core.box_list_ops import prune_small_boxes [as 别名]
def test_prune_small_boxes_prunes_boxes_with_negative_side(self):
boxes = tf.constant([[4.0, 3.0, 7.0, 5.0],
[5.0, 6.0, 10.0, 7.0],
[3.0, 4.0, 6.0, 8.0],
[14.0, 14.0, 15.0, 15.0],
[0.0, 0.0, 20.0, 20.0],
[2.0, 3.0, 1.5, 7.0], # negative height
[2.0, 3.0, 5.0, 1.7]]) # negative width
exp_boxes = [[3.0, 4.0, 6.0, 8.0],
[0.0, 0.0, 20.0, 20.0]]
boxes = box_list.BoxList(boxes)
pruned_boxes = box_list_ops.prune_small_boxes(boxes, 3)
with self.test_session() as sess:
pruned_boxes = sess.run(pruned_boxes.get())
self.assertAllEqual(pruned_boxes, exp_boxes)