当前位置: 首页>>代码示例>>Python>>正文


Python box_list_ops.matched_iou方法代码示例

本文整理汇总了Python中object_detection.core.box_list_ops.matched_iou方法的典型用法代码示例。如果您正苦于以下问题:Python box_list_ops.matched_iou方法的具体用法?Python box_list_ops.matched_iou怎么用?Python box_list_ops.matched_iou使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.core.box_list_ops的用法示例。


在下文中一共展示了box_list_ops.matched_iou方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _compute_loss

# 需要导入模块: from object_detection.core import box_list_ops [as 别名]
# 或者: from object_detection.core.box_list_ops import matched_iou [as 别名]
def _compute_loss(self, prediction_tensor, target_tensor, weights):
    """Compute loss function.

    Args:
      prediction_tensor: A float tensor of shape [batch_size, num_anchors, 4]
        representing the decoded predicted boxes
      target_tensor: A float tensor of shape [batch_size, num_anchors, 4]
        representing the decoded target boxes
      weights: a float tensor of shape [batch_size, num_anchors]

    Returns:
      loss: a (scalar) tensor representing the value of the loss function
    """
    predicted_boxes = box_list.BoxList(tf.reshape(prediction_tensor, [-1, 4]))
    target_boxes = box_list.BoxList(tf.reshape(target_tensor, [-1, 4]))
    per_anchor_iou_loss = 1.0 - box_list_ops.matched_iou(predicted_boxes,
                                                         target_boxes)
    return tf.reduce_sum(tf.reshape(weights, [-1]) * per_anchor_iou_loss) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:20,代码来源:losses.py

示例2: _compute_loss

# 需要导入模块: from object_detection.core import box_list_ops [as 别名]
# 或者: from object_detection.core.box_list_ops import matched_iou [as 别名]
def _compute_loss(self, prediction_tensor, target_tensor, weights):
    """Compute loss function.

    Args:
      prediction_tensor: A float tensor of shape [batch_size, num_anchors, 4]
        representing the decoded predicted boxes
      target_tensor: A float tensor of shape [batch_size, num_anchors, 4]
        representing the decoded target boxes
      weights: a float tensor of shape [batch_size, num_anchors]

    Returns:
      loss: a float tensor of shape [batch_size, num_anchors] tensor
        representing the value of the loss function.
    """
    predicted_boxes = box_list.BoxList(tf.reshape(prediction_tensor, [-1, 4]))
    target_boxes = box_list.BoxList(tf.reshape(target_tensor, [-1, 4]))
    per_anchor_iou_loss = 1.0 - box_list_ops.matched_iou(predicted_boxes,
                                                         target_boxes)
    return tf.reshape(weights, [-1]) * per_anchor_iou_loss 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:21,代码来源:losses.py

示例3: _compute_loss

# 需要导入模块: from object_detection.core import box_list_ops [as 别名]
# 或者: from object_detection.core.box_list_ops import matched_iou [as 别名]
def _compute_loss(self, prediction_tensor, target_tensor, weights):
        """Compute loss function.

        Args:
          prediction_tensor: A float tensor of shape [batch_size, num_anchors, 4]
            representing the decoded predicted boxes
          target_tensor: A float tensor of shape [batch_size, num_anchors, 4]
            representing the decoded target boxes
          weights: a float tensor of shape [batch_size, num_anchors]

        Returns:
          loss: a float tensor of shape [batch_size, num_anchors] tensor
            representing the value of the loss function.
        """
        predicted_boxes = box_list.BoxList(tf.reshape(prediction_tensor, [-1, 4]))
        target_boxes = box_list.BoxList(tf.reshape(target_tensor, [-1, 4]))
        per_anchor_iou_loss = 1.0 - box_list_ops.matched_iou(predicted_boxes,
                                                             target_boxes)
        return tf.reshape(weights, [-1]) * per_anchor_iou_loss 
开发者ID:kujason,项目名称:monopsr,代码行数:21,代码来源:losses.py


注:本文中的object_detection.core.box_list_ops.matched_iou方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。