当前位置: 首页>>代码示例>>Python>>正文


Python box_list_ops.gather方法代码示例

本文整理汇总了Python中object_detection.core.box_list_ops.gather方法的典型用法代码示例。如果您正苦于以下问题:Python box_list_ops.gather方法的具体用法?Python box_list_ops.gather怎么用?Python box_list_ops.gather使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.core.box_list_ops的用法示例。


在下文中一共展示了box_list_ops.gather方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_gather_with_dynamic_indexing

# 需要导入模块: from object_detection.core import box_list_ops [as 别名]
# 或者: from object_detection.core.box_list_ops import gather [as 别名]
def test_gather_with_dynamic_indexing(self):
    corners = tf.constant([4 * [0.0], 4 * [1.0], 4 * [2.0], 4 * [3.0], 4 * [4.0]
                          ])
    weights = tf.constant([.5, .3, .7, .1, .9], tf.float32)
    indices = tf.reshape(tf.where(tf.greater(weights, 0.4)), [-1])
    expected_subset = [4 * [0.0], 4 * [2.0], 4 * [4.0]]
    expected_weights = [.5, .7, .9]

    boxes = box_list.BoxList(corners)
    boxes.add_field('weights', weights)
    subset = box_list_ops.gather(boxes, indices, ['weights'])
    with self.test_session() as sess:
      subset_output, weights_output = sess.run([subset.get(), subset.get_field(
          'weights')])
      self.assertAllClose(subset_output, expected_subset)
      self.assertAllClose(weights_output, expected_weights) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:18,代码来源:box_list_ops_test.py

示例2: test_static_gather_with_field

# 需要导入模块: from object_detection.core import box_list_ops [as 别名]
# 或者: from object_detection.core.box_list_ops import gather [as 别名]
def test_static_gather_with_field(self):

    def graph_fn(corners, weights, indices):
      boxes = box_list.BoxList(corners)
      boxes.add_field('weights', weights)
      subset = box_list_ops.gather(
          boxes, indices, ['weights'], use_static_shapes=True)
      return (subset.get_field('boxes'), subset.get_field('weights'))

    corners = np.array([4 * [0.0], 4 * [1.0], 4 * [2.0], 4 * [3.0],
                        4 * [4.0]], dtype=np.float32)
    weights = np.array([[.1], [.3], [.5], [.7], [.9]], dtype=np.float32)
    indices = np.array([0, 2, 4], dtype=np.int32)

    result_boxes, result_weights = self.execute(graph_fn,
                                                [corners, weights, indices])
    expected_boxes = [4 * [0.0], 4 * [2.0], 4 * [4.0]]
    expected_weights = [[.1], [.5], [.9]]
    self.assertAllClose(result_boxes, expected_boxes)
    self.assertAllClose(result_weights, expected_weights) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:22,代码来源:box_list_ops_test.py

示例3: test_dynamic_gather_with_field

# 需要导入模块: from object_detection.core import box_list_ops [as 别名]
# 或者: from object_detection.core.box_list_ops import gather [as 别名]
def test_dynamic_gather_with_field(self):
    corners = tf.placeholder(tf.float32, [None, 4])
    indices = tf.placeholder(tf.int32, [None])
    weights = tf.placeholder(tf.float32, [None, 1])
    expected_subset = [4 * [0.0], 4 * [2.0], 4 * [4.0]]
    expected_weights = [[.1], [.5], [.9]]

    boxes = box_list.BoxList(corners)
    boxes.add_field('weights', weights)
    subset = box_list_ops.gather(boxes, indices, ['weights'],
                                 use_static_shapes=True)
    with self.test_session() as sess:
      subset_output, weights_output = sess.run(
          [subset.get(), subset.get_field('weights')],
          feed_dict={
              corners:
                  np.array(
                      [4 * [0.0], 4 * [1.0], 4 * [2.0], 4 * [3.0], 4 * [4.0]]),
              indices:
                  np.array([0, 2, 4]).astype(np.int32),
              weights:
                  np.array([[.1], [.3], [.5], [.7], [.9]])
          })
      self.assertAllClose(subset_output, expected_subset)
      self.assertAllClose(weights_output, expected_weights) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:27,代码来源:box_list_ops_test.py

示例4: _create_regression_targets

# 需要导入模块: from object_detection.core import box_list_ops [as 别名]
# 或者: from object_detection.core.box_list_ops import gather [as 别名]
def _create_regression_targets(self, anchors, groundtruth_boxes, match):
    """Returns a regression target for each anchor.

    Args:
      anchors: a BoxList representing N anchors
      groundtruth_boxes: a BoxList representing M groundtruth_boxes
      match: a matcher.Match object

    Returns:
      reg_targets: a float32 tensor with shape [N, box_code_dimension]
    """
    matched_anchor_indices = match.matched_column_indices()
    unmatched_ignored_anchor_indices = (match.
                                        unmatched_or_ignored_column_indices())
    matched_gt_indices = match.matched_row_indices()
    matched_anchors = box_list_ops.gather(anchors,
                                          matched_anchor_indices)
    matched_gt_boxes = box_list_ops.gather(groundtruth_boxes,
                                           matched_gt_indices)
    matched_reg_targets = self._box_coder.encode(matched_gt_boxes,
                                                 matched_anchors)
    unmatched_ignored_reg_targets = tf.tile(
        self._default_regression_target(),
        tf.stack([tf.size(unmatched_ignored_anchor_indices), 1]))
    reg_targets = tf.dynamic_stitch(
        [matched_anchor_indices, unmatched_ignored_anchor_indices],
        [matched_reg_targets, unmatched_ignored_reg_targets])
    # TODO: summarize the number of matches on average.
    return reg_targets 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:31,代码来源:target_assigner.py

示例5: _create_classification_targets

# 需要导入模块: from object_detection.core import box_list_ops [as 别名]
# 或者: from object_detection.core.box_list_ops import gather [as 别名]
def _create_classification_targets(self, groundtruth_labels, match):
    """Create classification targets for each anchor.

    Assign a classification target of for each anchor to the matching
    groundtruth label that is provided by match.  Anchors that are not matched
    to anything are given the target self._unmatched_cls_target

    Args:
      groundtruth_labels:  a tensor of shape [num_gt_boxes, d_1, ... d_k]
        with labels for each of the ground_truth boxes. The subshape
        [d_1, ... d_k] can be empty (corresponding to scalar labels).
      match: a matcher.Match object that provides a matching between anchors
        and groundtruth boxes.

    Returns:
      cls_targets: a float32 tensor with shape [num_anchors, d_1, d_2 ... d_k],
        where the subshape [d_1, ..., d_k] is compatible with groundtruth_labels
        which has shape [num_gt_boxes, d_1, d_2, ... d_k].
    """
    matched_anchor_indices = match.matched_column_indices()
    unmatched_ignored_anchor_indices = (match.
                                        unmatched_or_ignored_column_indices())
    matched_gt_indices = match.matched_row_indices()
    matched_cls_targets = tf.gather(groundtruth_labels, matched_gt_indices)

    ones = self._unmatched_cls_target.shape.ndims * [1]
    unmatched_ignored_cls_targets = tf.tile(
        tf.expand_dims(self._unmatched_cls_target, 0),
        tf.stack([tf.size(unmatched_ignored_anchor_indices)] + ones))

    cls_targets = tf.dynamic_stitch(
        [matched_anchor_indices, unmatched_ignored_anchor_indices],
        [matched_cls_targets, unmatched_ignored_cls_targets])
    return cls_targets 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:36,代码来源:target_assigner.py

示例6: test_gather

# 需要导入模块: from object_detection.core import box_list_ops [as 别名]
# 或者: from object_detection.core.box_list_ops import gather [as 别名]
def test_gather(self):
    corners = tf.constant(
        [4 * [0.0], 4 * [1.0], 4 * [2.0], 4 * [3.0], 4 * [4.0]])
    indices = tf.constant([0, 2, 4], tf.int32)
    expected_subset = [4 * [0.0], 4 * [2.0], 4 * [4.0]]
    boxes = box_list.BoxList(corners)
    subset = box_list_ops.gather(boxes, indices)
    with self.test_session() as sess:
      subset_output = sess.run(subset.get())
      self.assertAllClose(subset_output, expected_subset) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:12,代码来源:box_list_ops_test.py

示例7: test_gather_with_field

# 需要导入模块: from object_detection.core import box_list_ops [as 别名]
# 或者: from object_detection.core.box_list_ops import gather [as 别名]
def test_gather_with_field(self):
    corners = tf.constant([4*[0.0], 4*[1.0], 4*[2.0], 4*[3.0], 4*[4.0]])
    indices = tf.constant([0, 2, 4], tf.int32)
    weights = tf.constant([[.1], [.3], [.5], [.7], [.9]], tf.float32)
    expected_subset = [4 * [0.0], 4 * [2.0], 4 * [4.0]]
    expected_weights = [[.1], [.5], [.9]]

    boxes = box_list.BoxList(corners)
    boxes.add_field('weights', weights)
    subset = box_list_ops.gather(boxes, indices, ['weights'])
    with self.test_session() as sess:
      subset_output, weights_output = sess.run(
          [subset.get(), subset.get_field('weights')])
      self.assertAllClose(subset_output, expected_subset)
      self.assertAllClose(weights_output, expected_weights) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:17,代码来源:box_list_ops_test.py

示例8: test_gather_with_invalid_field

# 需要导入模块: from object_detection.core import box_list_ops [as 别名]
# 或者: from object_detection.core.box_list_ops import gather [as 别名]
def test_gather_with_invalid_field(self):
    corners = tf.constant([4 * [0.0], 4 * [1.0]])
    indices = tf.constant([0, 1], tf.int32)
    weights = tf.constant([[.1], [.3]], tf.float32)

    boxes = box_list.BoxList(corners)
    boxes.add_field('weights', weights)
    with self.assertRaises(ValueError):
      box_list_ops.gather(boxes, indices, ['foo', 'bar']) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:11,代码来源:box_list_ops_test.py

示例9: test_gather_with_invalid_inputs

# 需要导入模块: from object_detection.core import box_list_ops [as 别名]
# 或者: from object_detection.core.box_list_ops import gather [as 别名]
def test_gather_with_invalid_inputs(self):
    corners = tf.constant(
        [4 * [0.0], 4 * [1.0], 4 * [2.0], 4 * [3.0], 4 * [4.0]])
    indices_float32 = tf.constant([0, 2, 4], tf.float32)
    boxes = box_list.BoxList(corners)
    with self.assertRaises(ValueError):
      _ = box_list_ops.gather(boxes, indices_float32)
    indices_2d = tf.constant([[0, 2, 4]], tf.int32)
    boxes = box_list.BoxList(corners)
    with self.assertRaises(ValueError):
      _ = box_list_ops.gather(boxes, indices_2d) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:13,代码来源:box_list_ops_test.py


注:本文中的object_detection.core.box_list_ops.gather方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。