本文整理汇总了Python中object_detection.core.box_list_ops.gather方法的典型用法代码示例。如果您正苦于以下问题:Python box_list_ops.gather方法的具体用法?Python box_list_ops.gather怎么用?Python box_list_ops.gather使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类object_detection.core.box_list_ops
的用法示例。
在下文中一共展示了box_list_ops.gather方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_gather_with_dynamic_indexing
# 需要导入模块: from object_detection.core import box_list_ops [as 别名]
# 或者: from object_detection.core.box_list_ops import gather [as 别名]
def test_gather_with_dynamic_indexing(self):
corners = tf.constant([4 * [0.0], 4 * [1.0], 4 * [2.0], 4 * [3.0], 4 * [4.0]
])
weights = tf.constant([.5, .3, .7, .1, .9], tf.float32)
indices = tf.reshape(tf.where(tf.greater(weights, 0.4)), [-1])
expected_subset = [4 * [0.0], 4 * [2.0], 4 * [4.0]]
expected_weights = [.5, .7, .9]
boxes = box_list.BoxList(corners)
boxes.add_field('weights', weights)
subset = box_list_ops.gather(boxes, indices, ['weights'])
with self.test_session() as sess:
subset_output, weights_output = sess.run([subset.get(), subset.get_field(
'weights')])
self.assertAllClose(subset_output, expected_subset)
self.assertAllClose(weights_output, expected_weights)
示例2: test_static_gather_with_field
# 需要导入模块: from object_detection.core import box_list_ops [as 别名]
# 或者: from object_detection.core.box_list_ops import gather [as 别名]
def test_static_gather_with_field(self):
def graph_fn(corners, weights, indices):
boxes = box_list.BoxList(corners)
boxes.add_field('weights', weights)
subset = box_list_ops.gather(
boxes, indices, ['weights'], use_static_shapes=True)
return (subset.get_field('boxes'), subset.get_field('weights'))
corners = np.array([4 * [0.0], 4 * [1.0], 4 * [2.0], 4 * [3.0],
4 * [4.0]], dtype=np.float32)
weights = np.array([[.1], [.3], [.5], [.7], [.9]], dtype=np.float32)
indices = np.array([0, 2, 4], dtype=np.int32)
result_boxes, result_weights = self.execute(graph_fn,
[corners, weights, indices])
expected_boxes = [4 * [0.0], 4 * [2.0], 4 * [4.0]]
expected_weights = [[.1], [.5], [.9]]
self.assertAllClose(result_boxes, expected_boxes)
self.assertAllClose(result_weights, expected_weights)
示例3: test_dynamic_gather_with_field
# 需要导入模块: from object_detection.core import box_list_ops [as 别名]
# 或者: from object_detection.core.box_list_ops import gather [as 别名]
def test_dynamic_gather_with_field(self):
corners = tf.placeholder(tf.float32, [None, 4])
indices = tf.placeholder(tf.int32, [None])
weights = tf.placeholder(tf.float32, [None, 1])
expected_subset = [4 * [0.0], 4 * [2.0], 4 * [4.0]]
expected_weights = [[.1], [.5], [.9]]
boxes = box_list.BoxList(corners)
boxes.add_field('weights', weights)
subset = box_list_ops.gather(boxes, indices, ['weights'],
use_static_shapes=True)
with self.test_session() as sess:
subset_output, weights_output = sess.run(
[subset.get(), subset.get_field('weights')],
feed_dict={
corners:
np.array(
[4 * [0.0], 4 * [1.0], 4 * [2.0], 4 * [3.0], 4 * [4.0]]),
indices:
np.array([0, 2, 4]).astype(np.int32),
weights:
np.array([[.1], [.3], [.5], [.7], [.9]])
})
self.assertAllClose(subset_output, expected_subset)
self.assertAllClose(weights_output, expected_weights)
示例4: _create_regression_targets
# 需要导入模块: from object_detection.core import box_list_ops [as 别名]
# 或者: from object_detection.core.box_list_ops import gather [as 别名]
def _create_regression_targets(self, anchors, groundtruth_boxes, match):
"""Returns a regression target for each anchor.
Args:
anchors: a BoxList representing N anchors
groundtruth_boxes: a BoxList representing M groundtruth_boxes
match: a matcher.Match object
Returns:
reg_targets: a float32 tensor with shape [N, box_code_dimension]
"""
matched_anchor_indices = match.matched_column_indices()
unmatched_ignored_anchor_indices = (match.
unmatched_or_ignored_column_indices())
matched_gt_indices = match.matched_row_indices()
matched_anchors = box_list_ops.gather(anchors,
matched_anchor_indices)
matched_gt_boxes = box_list_ops.gather(groundtruth_boxes,
matched_gt_indices)
matched_reg_targets = self._box_coder.encode(matched_gt_boxes,
matched_anchors)
unmatched_ignored_reg_targets = tf.tile(
self._default_regression_target(),
tf.stack([tf.size(unmatched_ignored_anchor_indices), 1]))
reg_targets = tf.dynamic_stitch(
[matched_anchor_indices, unmatched_ignored_anchor_indices],
[matched_reg_targets, unmatched_ignored_reg_targets])
# TODO: summarize the number of matches on average.
return reg_targets
示例5: _create_classification_targets
# 需要导入模块: from object_detection.core import box_list_ops [as 别名]
# 或者: from object_detection.core.box_list_ops import gather [as 别名]
def _create_classification_targets(self, groundtruth_labels, match):
"""Create classification targets for each anchor.
Assign a classification target of for each anchor to the matching
groundtruth label that is provided by match. Anchors that are not matched
to anything are given the target self._unmatched_cls_target
Args:
groundtruth_labels: a tensor of shape [num_gt_boxes, d_1, ... d_k]
with labels for each of the ground_truth boxes. The subshape
[d_1, ... d_k] can be empty (corresponding to scalar labels).
match: a matcher.Match object that provides a matching between anchors
and groundtruth boxes.
Returns:
cls_targets: a float32 tensor with shape [num_anchors, d_1, d_2 ... d_k],
where the subshape [d_1, ..., d_k] is compatible with groundtruth_labels
which has shape [num_gt_boxes, d_1, d_2, ... d_k].
"""
matched_anchor_indices = match.matched_column_indices()
unmatched_ignored_anchor_indices = (match.
unmatched_or_ignored_column_indices())
matched_gt_indices = match.matched_row_indices()
matched_cls_targets = tf.gather(groundtruth_labels, matched_gt_indices)
ones = self._unmatched_cls_target.shape.ndims * [1]
unmatched_ignored_cls_targets = tf.tile(
tf.expand_dims(self._unmatched_cls_target, 0),
tf.stack([tf.size(unmatched_ignored_anchor_indices)] + ones))
cls_targets = tf.dynamic_stitch(
[matched_anchor_indices, unmatched_ignored_anchor_indices],
[matched_cls_targets, unmatched_ignored_cls_targets])
return cls_targets
示例6: test_gather
# 需要导入模块: from object_detection.core import box_list_ops [as 别名]
# 或者: from object_detection.core.box_list_ops import gather [as 别名]
def test_gather(self):
corners = tf.constant(
[4 * [0.0], 4 * [1.0], 4 * [2.0], 4 * [3.0], 4 * [4.0]])
indices = tf.constant([0, 2, 4], tf.int32)
expected_subset = [4 * [0.0], 4 * [2.0], 4 * [4.0]]
boxes = box_list.BoxList(corners)
subset = box_list_ops.gather(boxes, indices)
with self.test_session() as sess:
subset_output = sess.run(subset.get())
self.assertAllClose(subset_output, expected_subset)
示例7: test_gather_with_field
# 需要导入模块: from object_detection.core import box_list_ops [as 别名]
# 或者: from object_detection.core.box_list_ops import gather [as 别名]
def test_gather_with_field(self):
corners = tf.constant([4*[0.0], 4*[1.0], 4*[2.0], 4*[3.0], 4*[4.0]])
indices = tf.constant([0, 2, 4], tf.int32)
weights = tf.constant([[.1], [.3], [.5], [.7], [.9]], tf.float32)
expected_subset = [4 * [0.0], 4 * [2.0], 4 * [4.0]]
expected_weights = [[.1], [.5], [.9]]
boxes = box_list.BoxList(corners)
boxes.add_field('weights', weights)
subset = box_list_ops.gather(boxes, indices, ['weights'])
with self.test_session() as sess:
subset_output, weights_output = sess.run(
[subset.get(), subset.get_field('weights')])
self.assertAllClose(subset_output, expected_subset)
self.assertAllClose(weights_output, expected_weights)
示例8: test_gather_with_invalid_field
# 需要导入模块: from object_detection.core import box_list_ops [as 别名]
# 或者: from object_detection.core.box_list_ops import gather [as 别名]
def test_gather_with_invalid_field(self):
corners = tf.constant([4 * [0.0], 4 * [1.0]])
indices = tf.constant([0, 1], tf.int32)
weights = tf.constant([[.1], [.3]], tf.float32)
boxes = box_list.BoxList(corners)
boxes.add_field('weights', weights)
with self.assertRaises(ValueError):
box_list_ops.gather(boxes, indices, ['foo', 'bar'])
示例9: test_gather_with_invalid_inputs
# 需要导入模块: from object_detection.core import box_list_ops [as 别名]
# 或者: from object_detection.core.box_list_ops import gather [as 别名]
def test_gather_with_invalid_inputs(self):
corners = tf.constant(
[4 * [0.0], 4 * [1.0], 4 * [2.0], 4 * [3.0], 4 * [4.0]])
indices_float32 = tf.constant([0, 2, 4], tf.float32)
boxes = box_list.BoxList(corners)
with self.assertRaises(ValueError):
_ = box_list_ops.gather(boxes, indices_float32)
indices_2d = tf.constant([[0, 2, 4]], tf.int32)
boxes = box_list.BoxList(corners)
with self.assertRaises(ValueError):
_ = box_list_ops.gather(boxes, indices_2d)