本文整理汇总了Python中object_detection.builders.region_similarity_calculator_builder.build方法的典型用法代码示例。如果您正苦于以下问题:Python region_similarity_calculator_builder.build方法的具体用法?Python region_similarity_calculator_builder.build怎么用?Python region_similarity_calculator_builder.build使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类object_detection.builders.region_similarity_calculator_builder
的用法示例。
在下文中一共展示了region_similarity_calculator_builder.build方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: build
# 需要导入模块: from object_detection.builders import region_similarity_calculator_builder [as 别名]
# 或者: from object_detection.builders.region_similarity_calculator_builder import build [as 别名]
def build(model_config, is_training):
"""Builds a DetectionModel based on the model config.
Args:
model_config: A model.proto object containing the config for the desired
DetectionModel.
is_training: True if this model is being built for training purposes.
Returns:
DetectionModel based on the config.
Raises:
ValueError: On invalid meta architecture or model.
"""
if not isinstance(model_config, model_pb2.DetectionModel):
raise ValueError('model_config not of type model_pb2.DetectionModel.')
meta_architecture = model_config.WhichOneof('model')
if meta_architecture == 'ssd':
return _build_ssd_model(model_config.ssd, is_training)
if meta_architecture == 'faster_rcnn':
return _build_faster_rcnn_model(model_config.faster_rcnn, is_training)
raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
示例2: build
# 需要导入模块: from object_detection.builders import region_similarity_calculator_builder [as 别名]
# 或者: from object_detection.builders.region_similarity_calculator_builder import build [as 别名]
def build(model_config, is_training, add_summaries=True):
"""Builds a DetectionModel based on the model config.
Args:
model_config: A model.proto object containing the config for the desired
DetectionModel.
is_training: True if this model is being built for training purposes.
add_summaries: Whether to add tensorflow summaries in the model graph.
Returns:
DetectionModel based on the config.
Raises:
ValueError: On invalid meta architecture or model.
"""
if not isinstance(model_config, model_pb2.DetectionModel):
raise ValueError('model_config not of type model_pb2.DetectionModel.')
meta_architecture = model_config.WhichOneof('model')
if meta_architecture == 'ssd':
return _build_ssd_model(model_config.ssd, is_training, add_summaries)
if meta_architecture == 'faster_rcnn':
return _build_faster_rcnn_model(model_config.faster_rcnn, is_training,
add_summaries)
raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
示例3: build
# 需要导入模块: from object_detection.builders import region_similarity_calculator_builder [as 别名]
# 或者: from object_detection.builders.region_similarity_calculator_builder import build [as 别名]
def build(model_config, is_training, add_summaries=True):
"""Builds a DetectionModel based on the model config.
Args:
model_config: A model.proto object containing the config for the desired
DetectionModel.
is_training: True if this model is being built for training purposes.
add_summaries: Whether to add tensorflow summaries in the model graph.
Returns:
DetectionModel based on the config.
Raises:
ValueError: On invalid meta architecture or model.
"""
if not isinstance(model_config, model_pb2.DetectionModel):
raise ValueError('model_config not of type model_pb2.DetectionModel.')
meta_architecture = model_config.WhichOneof('model')
if meta_architecture == 'ssd':
return _build_ssd_model(model_config.ssd, is_training, add_summaries)
if meta_architecture == 'faster_rcnn':
return _build_faster_rcnn_model(model_config.faster_rcnn, is_training,
add_summaries)
raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
示例4: _build_ssd_feature_extractor
# 需要导入模块: from object_detection.builders import region_similarity_calculator_builder [as 别名]
# 或者: from object_detection.builders.region_similarity_calculator_builder import build [as 别名]
def _build_ssd_feature_extractor(feature_extractor_config, is_training,
reuse_weights=None):
"""Builds a ssd_meta_arch.SSDFeatureExtractor based on config.
Args:
feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
is_training: True if this feature extractor is being built for training.
reuse_weights: if the feature extractor should reuse weights.
Returns:
ssd_meta_arch.SSDFeatureExtractor based on config.
Raises:
ValueError: On invalid feature extractor type.
"""
feature_type = feature_extractor_config.type
depth_multiplier = feature_extractor_config.depth_multiplier
min_depth = feature_extractor_config.min_depth
conv_hyperparams = hyperparams_builder.build(
feature_extractor_config.conv_hyperparams, is_training)
if feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP:
raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))
feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
return feature_extractor_class(depth_multiplier, min_depth, conv_hyperparams,
reuse_weights)
示例5: testBuildIoaSimilarityCalculator
# 需要导入模块: from object_detection.builders import region_similarity_calculator_builder [as 别名]
# 或者: from object_detection.builders.region_similarity_calculator_builder import build [as 别名]
def testBuildIoaSimilarityCalculator(self):
similarity_calc_text_proto = """
ioa_similarity {
}
"""
similarity_calc_proto = sim_calc_pb2.RegionSimilarityCalculator()
text_format.Merge(similarity_calc_text_proto, similarity_calc_proto)
similarity_calc = region_similarity_calculator_builder.build(
similarity_calc_proto)
self.assertTrue(isinstance(similarity_calc,
region_similarity_calculator.IoaSimilarity))
示例6: testBuildIouSimilarityCalculator
# 需要导入模块: from object_detection.builders import region_similarity_calculator_builder [as 别名]
# 或者: from object_detection.builders.region_similarity_calculator_builder import build [as 别名]
def testBuildIouSimilarityCalculator(self):
similarity_calc_text_proto = """
iou_similarity {
}
"""
similarity_calc_proto = sim_calc_pb2.RegionSimilarityCalculator()
text_format.Merge(similarity_calc_text_proto, similarity_calc_proto)
similarity_calc = region_similarity_calculator_builder.build(
similarity_calc_proto)
self.assertTrue(isinstance(similarity_calc,
region_similarity_calculator.IouSimilarity))
示例7: testBuildNegSqDistSimilarityCalculator
# 需要导入模块: from object_detection.builders import region_similarity_calculator_builder [as 别名]
# 或者: from object_detection.builders.region_similarity_calculator_builder import build [as 别名]
def testBuildNegSqDistSimilarityCalculator(self):
similarity_calc_text_proto = """
neg_sq_dist_similarity {
}
"""
similarity_calc_proto = sim_calc_pb2.RegionSimilarityCalculator()
text_format.Merge(similarity_calc_text_proto, similarity_calc_proto)
similarity_calc = region_similarity_calculator_builder.build(
similarity_calc_proto)
self.assertTrue(isinstance(similarity_calc,
region_similarity_calculator.
NegSqDistSimilarity))
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:14,代码来源:region_similarity_calculator_builder_test.py
示例8: _build_ssd_feature_extractor
# 需要导入模块: from object_detection.builders import region_similarity_calculator_builder [as 别名]
# 或者: from object_detection.builders.region_similarity_calculator_builder import build [as 别名]
def _build_ssd_feature_extractor(feature_extractor_config, is_training,
reuse_weights=None):
"""Builds a ssd_meta_arch.SSDFeatureExtractor based on config.
Args:
feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
is_training: True if this feature extractor is being built for training.
reuse_weights: if the feature extractor should reuse weights.
Returns:
ssd_meta_arch.SSDFeatureExtractor based on config.
Raises:
ValueError: On invalid feature extractor type.
"""
feature_type = feature_extractor_config.type
depth_multiplier = feature_extractor_config.depth_multiplier
min_depth = feature_extractor_config.min_depth
pad_to_multiple = feature_extractor_config.pad_to_multiple
batch_norm_trainable = feature_extractor_config.batch_norm_trainable
use_explicit_padding = feature_extractor_config.use_explicit_padding
use_depthwise = feature_extractor_config.use_depthwise
conv_hyperparams = hyperparams_builder.build(
feature_extractor_config.conv_hyperparams, is_training)
if feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP:
raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))
feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
return feature_extractor_class(is_training, depth_multiplier, min_depth,
pad_to_multiple, conv_hyperparams,
batch_norm_trainable, reuse_weights,
use_explicit_padding, use_depthwise)
示例9: build
# 需要导入模块: from object_detection.builders import region_similarity_calculator_builder [as 别名]
# 或者: from object_detection.builders.region_similarity_calculator_builder import build [as 别名]
def build(model_config, is_training, add_summaries=True,
add_background_class=True):
"""Builds a DetectionModel based on the model config.
Args:
model_config: A model.proto object containing the config for the desired
DetectionModel.
is_training: True if this model is being built for training purposes.
add_summaries: Whether to add tensorflow summaries in the model graph.
add_background_class: Whether to add an implicit background class to one-hot
encodings of groundtruth labels. Set to false if using groundtruth labels
with an explicit background class or using multiclass scores instead of
truth in the case of distillation. Ignored in the case of faster_rcnn.
Returns:
DetectionModel based on the config.
Raises:
ValueError: On invalid meta architecture or model.
"""
if not isinstance(model_config, model_pb2.DetectionModel):
raise ValueError('model_config not of type model_pb2.DetectionModel.')
meta_architecture = model_config.WhichOneof('model')
if meta_architecture == 'ssd':
return _build_ssd_model(model_config.ssd, is_training, add_summaries,
add_background_class)
if meta_architecture == 'faster_rcnn':
return _build_faster_rcnn_model(model_config.faster_rcnn, is_training,
add_summaries)
raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
示例10: _build_ssd_feature_extractor
# 需要导入模块: from object_detection.builders import region_similarity_calculator_builder [as 别名]
# 或者: from object_detection.builders.region_similarity_calculator_builder import build [as 别名]
def _build_ssd_feature_extractor(feature_extractor_config, is_training,
reuse_weights=None):
"""Builds a ssd_meta_arch.SSDFeatureExtractor based on config.
Args:
feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
is_training: True if this feature extractor is being built for training.
reuse_weights: if the feature extractor should reuse weights.
Returns:
ssd_meta_arch.SSDFeatureExtractor based on config.
Raises:
ValueError: On invalid feature extractor type.
"""
feature_type = feature_extractor_config.type
depth_multiplier = feature_extractor_config.depth_multiplier
min_depth = feature_extractor_config.min_depth
pad_to_multiple = feature_extractor_config.pad_to_multiple
use_explicit_padding = feature_extractor_config.use_explicit_padding
use_depthwise = feature_extractor_config.use_depthwise
conv_hyperparams = hyperparams_builder.build(
feature_extractor_config.conv_hyperparams, is_training)
override_base_feature_extractor_hyperparams = (
feature_extractor_config.override_base_feature_extractor_hyperparams)
if feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP:
raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))
feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
return feature_extractor_class(
is_training, depth_multiplier, min_depth, pad_to_multiple,
conv_hyperparams, reuse_weights, use_explicit_padding, use_depthwise,
override_base_feature_extractor_hyperparams)