本文整理汇总了Python中object_detection.builders.post_processing_builder.build方法的典型用法代码示例。如果您正苦于以下问题:Python post_processing_builder.build方法的具体用法?Python post_processing_builder.build怎么用?Python post_processing_builder.build使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类object_detection.builders.post_processing_builder
的用法示例。
在下文中一共展示了post_processing_builder.build方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_build_non_max_suppressor_with_correct_parameters
# 需要导入模块: from object_detection.builders import post_processing_builder [as 别名]
# 或者: from object_detection.builders.post_processing_builder import build [as 别名]
def test_build_non_max_suppressor_with_correct_parameters(self):
post_processing_text_proto = """
batch_non_max_suppression {
score_threshold: 0.7
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 300
}
"""
post_processing_config = post_processing_pb2.PostProcessing()
text_format.Merge(post_processing_text_proto, post_processing_config)
non_max_suppressor, _ = post_processing_builder.build(
post_processing_config)
self.assertEqual(non_max_suppressor.keywords['max_size_per_class'], 100)
self.assertEqual(non_max_suppressor.keywords['max_total_size'], 300)
self.assertAlmostEqual(non_max_suppressor.keywords['score_thresh'], 0.7)
self.assertAlmostEqual(non_max_suppressor.keywords['iou_thresh'], 0.6)
示例2: build
# 需要导入模块: from object_detection.builders import post_processing_builder [as 别名]
# 或者: from object_detection.builders.post_processing_builder import build [as 别名]
def build(model_config, is_training):
"""Builds a DetectionModel based on the model config.
Args:
model_config: A model.proto object containing the config for the desired
DetectionModel.
is_training: True if this model is being built for training purposes.
Returns:
DetectionModel based on the config.
Raises:
ValueError: On invalid meta architecture or model.
"""
if not isinstance(model_config, model_pb2.DetectionModel):
raise ValueError('model_config not of type model_pb2.DetectionModel.')
meta_architecture = model_config.WhichOneof('model')
if meta_architecture == 'ssd':
return _build_ssd_model(model_config.ssd, is_training)
if meta_architecture == 'faster_rcnn':
return _build_faster_rcnn_model(model_config.faster_rcnn, is_training)
raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
示例3: _get_second_stage_box_predictor
# 需要导入模块: from object_detection.builders import post_processing_builder [as 别名]
# 或者: from object_detection.builders.post_processing_builder import build [as 别名]
def _get_second_stage_box_predictor(self, num_classes, is_training,
predict_masks, masks_are_class_agnostic):
box_predictor_proto = box_predictor_pb2.BoxPredictor()
text_format.Merge(self._get_second_stage_box_predictor_text_proto(),
box_predictor_proto)
if predict_masks:
text_format.Merge(
self._add_mask_to_second_stage_box_predictor_text_proto(
masks_are_class_agnostic),
box_predictor_proto)
return box_predictor_builder.build(
hyperparams_builder.build,
box_predictor_proto,
num_classes=num_classes,
is_training=is_training)
示例4: test_build_identity_score_converter_with_logit_scale
# 需要导入模块: from object_detection.builders import post_processing_builder [as 别名]
# 或者: from object_detection.builders.post_processing_builder import build [as 别名]
def test_build_identity_score_converter_with_logit_scale(self):
post_processing_text_proto = """
score_converter: IDENTITY
logit_scale: 2.0
"""
post_processing_config = post_processing_pb2.PostProcessing()
text_format.Merge(post_processing_text_proto, post_processing_config)
_, score_converter = post_processing_builder.build(post_processing_config)
self.assertEqual(score_converter.__name__, 'identity_with_logit_scale')
inputs = tf.constant([1, 1], tf.float32)
outputs = score_converter(inputs)
with self.test_session() as sess:
converted_scores = sess.run(outputs)
expected_converted_scores = sess.run(tf.constant([.5, .5], tf.float32))
self.assertAllClose(converted_scores, expected_converted_scores)
示例5: build
# 需要导入模块: from object_detection.builders import post_processing_builder [as 别名]
# 或者: from object_detection.builders.post_processing_builder import build [as 别名]
def build(model_config, is_training, add_summaries=True):
"""Builds a DetectionModel based on the model config.
Args:
model_config: A model.proto object containing the config for the desired
DetectionModel.
is_training: True if this model is being built for training purposes.
add_summaries: Whether to add tensorflow summaries in the model graph.
Returns:
DetectionModel based on the config.
Raises:
ValueError: On invalid meta architecture or model.
"""
if not isinstance(model_config, model_pb2.DetectionModel):
raise ValueError('model_config not of type model_pb2.DetectionModel.')
meta_architecture = model_config.WhichOneof('model')
if meta_architecture == 'ssd':
return _build_ssd_model(model_config.ssd, is_training, add_summaries)
if meta_architecture == 'faster_rcnn':
return _build_faster_rcnn_model(model_config.faster_rcnn, is_training,
add_summaries)
raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
示例6: build
# 需要导入模块: from object_detection.builders import post_processing_builder [as 别名]
# 或者: from object_detection.builders.post_processing_builder import build [as 别名]
def build(model_config, is_training, add_summaries=True):
"""Builds a DetectionModel based on the model config.
Args:
model_config: A model.proto object containing the config for the desired
DetectionModel.
is_training: True if this model is being built for training purposes.
add_summaries: Whether to add tensorflow summaries in the model graph.
Returns:
DetectionModel based on the config.
Raises:
ValueError: On invalid meta architecture or model.
"""
if not isinstance(model_config, model_pb2.DetectionModel):
raise ValueError('model_config not of type model_pb2.DetectionModel.')
meta_architecture = model_config.WhichOneof('model')
if meta_architecture == 'ssd':
return _build_ssd_model(model_config.ssd, is_training, add_summaries)
if meta_architecture == 'faster_rcnn':
return _build_faster_rcnn_model(model_config.faster_rcnn, is_training,
add_summaries)
raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
示例7: _build_arg_scope_with_hyperparams
# 需要导入模块: from object_detection.builders import post_processing_builder [as 别名]
# 或者: from object_detection.builders.post_processing_builder import build [as 别名]
def _build_arg_scope_with_hyperparams(self,
hyperparams_text_proto,
is_training):
hyperparams = hyperparams_pb2.Hyperparams()
text_format.Merge(hyperparams_text_proto, hyperparams)
return hyperparams_builder.build(hyperparams, is_training=is_training)
示例8: _get_second_stage_box_predictor
# 需要导入模块: from object_detection.builders import post_processing_builder [as 别名]
# 或者: from object_detection.builders.post_processing_builder import build [as 别名]
def _get_second_stage_box_predictor(self, num_classes, is_training):
box_predictor_proto = box_predictor_pb2.BoxPredictor()
text_format.Merge(self._get_second_stage_box_predictor_text_proto(),
box_predictor_proto)
return box_predictor_builder.build(
hyperparams_builder.build,
box_predictor_proto,
num_classes=num_classes,
is_training=is_training)
示例9: test_build_identity_score_converter
# 需要导入模块: from object_detection.builders import post_processing_builder [as 别名]
# 或者: from object_detection.builders.post_processing_builder import build [as 别名]
def test_build_identity_score_converter(self):
post_processing_text_proto = """
score_converter: IDENTITY
"""
post_processing_config = post_processing_pb2.PostProcessing()
text_format.Merge(post_processing_text_proto, post_processing_config)
_, score_converter = post_processing_builder.build(post_processing_config)
self.assertEqual(score_converter, tf.identity)
示例10: test_build_sigmoid_score_converter
# 需要导入模块: from object_detection.builders import post_processing_builder [as 别名]
# 或者: from object_detection.builders.post_processing_builder import build [as 别名]
def test_build_sigmoid_score_converter(self):
post_processing_text_proto = """
score_converter: SIGMOID
"""
post_processing_config = post_processing_pb2.PostProcessing()
text_format.Merge(post_processing_text_proto, post_processing_config)
_, score_converter = post_processing_builder.build(post_processing_config)
self.assertEqual(score_converter, tf.sigmoid)
示例11: _build_ssd_feature_extractor
# 需要导入模块: from object_detection.builders import post_processing_builder [as 别名]
# 或者: from object_detection.builders.post_processing_builder import build [as 别名]
def _build_ssd_feature_extractor(feature_extractor_config, is_training,
reuse_weights=None):
"""Builds a ssd_meta_arch.SSDFeatureExtractor based on config.
Args:
feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
is_training: True if this feature extractor is being built for training.
reuse_weights: if the feature extractor should reuse weights.
Returns:
ssd_meta_arch.SSDFeatureExtractor based on config.
Raises:
ValueError: On invalid feature extractor type.
"""
feature_type = feature_extractor_config.type
depth_multiplier = feature_extractor_config.depth_multiplier
min_depth = feature_extractor_config.min_depth
conv_hyperparams = hyperparams_builder.build(
feature_extractor_config.conv_hyperparams, is_training)
if feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP:
raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))
feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
return feature_extractor_class(depth_multiplier, min_depth, conv_hyperparams,
reuse_weights)