本文整理汇总了Python中object_detection.builders.image_resizer_builder.build方法的典型用法代码示例。如果您正苦于以下问题:Python image_resizer_builder.build方法的具体用法?Python image_resizer_builder.build怎么用?Python image_resizer_builder.build使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类object_detection.builders.image_resizer_builder
的用法示例。
在下文中一共展示了image_resizer_builder.build方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: build
# 需要导入模块: from object_detection.builders import image_resizer_builder [as 别名]
# 或者: from object_detection.builders.image_resizer_builder import build [as 别名]
def build(model_config, is_training):
"""Builds a DetectionModel based on the model config.
Args:
model_config: A model.proto object containing the config for the desired
DetectionModel.
is_training: True if this model is being built for training purposes.
Returns:
DetectionModel based on the config.
Raises:
ValueError: On invalid meta architecture or model.
"""
if not isinstance(model_config, model_pb2.DetectionModel):
raise ValueError('model_config not of type model_pb2.DetectionModel.')
meta_architecture = model_config.WhichOneof('model')
if meta_architecture == 'ssd':
return _build_ssd_model(model_config.ssd, is_training)
if meta_architecture == 'faster_rcnn':
return _build_faster_rcnn_model(model_config.faster_rcnn, is_training)
raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
示例2: _shape_of_resized_random_image_given_text_proto
# 需要导入模块: from object_detection.builders import image_resizer_builder [as 别名]
# 或者: from object_detection.builders.image_resizer_builder import build [as 别名]
def _shape_of_resized_random_image_given_text_proto(
self, input_shape, text_proto):
image_resizer_config = image_resizer_pb2.ImageResizer()
text_format.Merge(text_proto, image_resizer_config)
image_resizer_fn = image_resizer_builder.build(image_resizer_config)
images = tf.to_float(tf.random_uniform(
input_shape, minval=0, maxval=255, dtype=tf.int32))
resized_images = image_resizer_fn(images)
with self.test_session() as sess:
return sess.run(resized_images).shape
示例3: test_raises_error_on_invalid_input
# 需要导入模块: from object_detection.builders import image_resizer_builder [as 别名]
# 或者: from object_detection.builders.image_resizer_builder import build [as 别名]
def test_raises_error_on_invalid_input(self):
invalid_input = 'invalid_input'
with self.assertRaises(ValueError):
image_resizer_builder.build(invalid_input)
示例4: _build_ssd_feature_extractor
# 需要导入模块: from object_detection.builders import image_resizer_builder [as 别名]
# 或者: from object_detection.builders.image_resizer_builder import build [as 别名]
def _build_ssd_feature_extractor(feature_extractor_config, is_training,
reuse_weights=None):
"""Builds a ssd_meta_arch.SSDFeatureExtractor based on config.
Args:
feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
is_training: True if this feature extractor is being built for training.
reuse_weights: if the feature extractor should reuse weights.
Returns:
ssd_meta_arch.SSDFeatureExtractor based on config.
Raises:
ValueError: On invalid feature extractor type.
"""
feature_type = feature_extractor_config.type
depth_multiplier = feature_extractor_config.depth_multiplier
min_depth = feature_extractor_config.min_depth
conv_hyperparams = hyperparams_builder.build(
feature_extractor_config.conv_hyperparams, is_training)
if feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP:
raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))
feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
return feature_extractor_class(depth_multiplier, min_depth, conv_hyperparams,
reuse_weights)
示例5: augment_input_data
# 需要导入模块: from object_detection.builders import image_resizer_builder [as 别名]
# 或者: from object_detection.builders.image_resizer_builder import build [as 别名]
def augment_input_data(tensor_dict, data_augmentation_options):
"""Applies data augmentation ops to input tensors.
Args:
tensor_dict: A dictionary of input tensors keyed by fields.InputDataFields.
data_augmentation_options: A list of tuples, where each tuple contains a
function and a dictionary that contains arguments and their values.
Usually, this is the output of core/preprocessor.build.
Returns:
A dictionary of tensors obtained by applying data augmentation ops to the
input tensor dictionary.
"""
tensor_dict[fields.InputDataFields.image] = tf.expand_dims(
tf.to_float(tensor_dict[fields.InputDataFields.image]), 0)
include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks
in tensor_dict)
include_keypoints = (fields.InputDataFields.groundtruth_keypoints
in tensor_dict)
tensor_dict = preprocessor.preprocess(
tensor_dict, data_augmentation_options,
func_arg_map=preprocessor.get_default_func_arg_map(
include_instance_masks=include_instance_masks,
include_keypoints=include_keypoints))
tensor_dict[fields.InputDataFields.image] = tf.squeeze(
tensor_dict[fields.InputDataFields.image], axis=0)
return tensor_dict
示例6: _shape_of_resized_random_image_given_text_proto
# 需要导入模块: from object_detection.builders import image_resizer_builder [as 别名]
# 或者: from object_detection.builders.image_resizer_builder import build [as 别名]
def _shape_of_resized_random_image_given_text_proto(self, input_shape,
text_proto):
image_resizer_config = image_resizer_pb2.ImageResizer()
text_format.Merge(text_proto, image_resizer_config)
image_resizer_fn = image_resizer_builder.build(image_resizer_config)
images = tf.to_float(
tf.random_uniform(input_shape, minval=0, maxval=255, dtype=tf.int32))
resized_images, _ = image_resizer_fn(images)
with self.test_session() as sess:
return sess.run(resized_images).shape
示例7: _resized_image_given_text_proto
# 需要导入模块: from object_detection.builders import image_resizer_builder [as 别名]
# 或者: from object_detection.builders.image_resizer_builder import build [as 别名]
def _resized_image_given_text_proto(self, image, text_proto):
image_resizer_config = image_resizer_pb2.ImageResizer()
text_format.Merge(text_proto, image_resizer_config)
image_resizer_fn = image_resizer_builder.build(image_resizer_config)
image_placeholder = tf.placeholder(tf.uint8, [1, None, None, 3])
resized_image, _ = image_resizer_fn(image_placeholder)
with self.test_session() as sess:
return sess.run(resized_image, feed_dict={image_placeholder: image})
示例8: _build_ssd_feature_extractor
# 需要导入模块: from object_detection.builders import image_resizer_builder [as 别名]
# 或者: from object_detection.builders.image_resizer_builder import build [as 别名]
def _build_ssd_feature_extractor(feature_extractor_config, is_training,
reuse_weights=None):
"""Builds a ssd_meta_arch.SSDFeatureExtractor based on config.
Args:
feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
is_training: True if this feature extractor is being built for training.
reuse_weights: if the feature extractor should reuse weights.
Returns:
ssd_meta_arch.SSDFeatureExtractor based on config.
Raises:
ValueError: On invalid feature extractor type.
"""
feature_type = feature_extractor_config.type
depth_multiplier = feature_extractor_config.depth_multiplier
min_depth = feature_extractor_config.min_depth
pad_to_multiple = feature_extractor_config.pad_to_multiple
batch_norm_trainable = feature_extractor_config.batch_norm_trainable
use_explicit_padding = feature_extractor_config.use_explicit_padding
use_depthwise = feature_extractor_config.use_depthwise
conv_hyperparams = hyperparams_builder.build(
feature_extractor_config.conv_hyperparams, is_training)
if feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP:
raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))
feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
return feature_extractor_class(is_training, depth_multiplier, min_depth,
pad_to_multiple, conv_hyperparams,
batch_norm_trainable, reuse_weights,
use_explicit_padding, use_depthwise)
示例9: _build_ssd_feature_extractor
# 需要导入模块: from object_detection.builders import image_resizer_builder [as 别名]
# 或者: from object_detection.builders.image_resizer_builder import build [as 别名]
def _build_ssd_feature_extractor(feature_extractor_config, is_training,
reuse_weights=None):
"""Builds a ssd_meta_arch.SSDFeatureExtractor based on config.
Args:
feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
is_training: True if this feature extractor is being built for training.
reuse_weights: if the feature extractor should reuse weights.
Returns:
ssd_meta_arch.SSDFeatureExtractor based on config.
Raises:
ValueError: On invalid feature extractor type.
"""
feature_type = feature_extractor_config.type
depth_multiplier = feature_extractor_config.depth_multiplier
min_depth = feature_extractor_config.min_depth
pad_to_multiple = feature_extractor_config.pad_to_multiple
use_explicit_padding = feature_extractor_config.use_explicit_padding
use_depthwise = feature_extractor_config.use_depthwise
conv_hyperparams = hyperparams_builder.build(
feature_extractor_config.conv_hyperparams, is_training)
override_base_feature_extractor_hyperparams = (
feature_extractor_config.override_base_feature_extractor_hyperparams)
if feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP:
raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))
feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
return feature_extractor_class(
is_training, depth_multiplier, min_depth, pad_to_multiple,
conv_hyperparams, reuse_weights, use_explicit_padding, use_depthwise,
override_base_feature_extractor_hyperparams)